math_op_patch.py 18.4 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
2
#
Y
Yang Yu 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
6
#
Y
Yang Yu 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
8
#
Y
Yang Yu 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17
import warnings
18 19
import inspect

20
from .. import core
21
from ..framework import Variable, unique_name, static_only
22
from .layer_function_generator import OpProtoHolder
23
from .control_flow import array_write, array_length
24
from paddle.fluid.dygraph.base import in_declarative_mode
Y
Yang Yu 已提交
25

26
_supported_int_dtype_ = [
27
    core.VarDesc.VarType.BOOL,
28 29 30 31 32 33 34
    core.VarDesc.VarType.UINT8,
    core.VarDesc.VarType.INT8,
    core.VarDesc.VarType.INT16,
    core.VarDesc.VarType.INT32,
    core.VarDesc.VarType.INT64,
]

35 36
compare_ops = ['__eq__', '__ne__', '__lt__', '__le__', '__gt__', '__ge__']

37 38 39 40 41 42 43
EXPRESSION_MAP = {
    "__add__": "A + B",
    "__radd__": "A += B",
    "__sub__": "A - B",
    "__rsub__": "A -= B",
    "__mul__": "A * B",
    "__rmul__": "A *= B",
44
    "__div__": "A / B",
45
    "__truediv__": "A / B",
46
    "__rdiv__": "A /= B",
47 48 49 50 51
    "__rtruediv__": "A /= B",
    "__pow__": "A ** B",
    "__rpow__": "A **= B",
    "__floordiv__": "A //B",
    "__mod__": "A % B",
52
    "__matmul__": "A @ B",
53 54 55 56 57 58 59 60
    "__eq__": "A == B",
    "__ne__": "A != B",
    "__lt__": "A < B",
    "__le__": "A <= B",
    "__gt__": "A > B",
    "__ge__": "A >= B"
}

61 62
_already_patch_variable = False

Y
Yang Yu 已提交
63 64

def monkey_patch_variable():
65

Y
Yang Yu 已提交
66
    def unique_tmp_name():
Y
Yu Yang 已提交
67
        return unique_name.generate("tmp")
Y
Yang Yu 已提交
68 69 70 71 72 73 74 75

    def safe_get_dtype(var):
        try:
            dtype = var.dtype
        except:
            raise ValueError("Cannot get data type from %s", var.name)
        return dtype

76
    def current_block(var):
77
        return var.block.program.current_block()
78 79 80 81 82

    def create_new_tmp_var(block, dtype):
        tmp_name = unique_tmp_name()
        return block.create_var(name=tmp_name, dtype=dtype)

Y
Yang Yu 已提交
83 84
    def create_tensor(block, value, dtype, shape):
        value = float(value)
85
        var = create_new_tmp_var(block, dtype)
86 87 88 89 90 91 92 93 94
        block.append_op(type="fill_constant",
                        outputs={'Out': [var]},
                        attrs={
                            'dtype': var.dtype,
                            'shape': shape,
                            'value': value,
                            'force_cpu': False
                        },
                        stop_gradient=True)
H
Hongyu Liu 已提交
95
        var.stop_gradient = True
Y
Yang Yu 已提交
96 97
        return var

Y
Yang Yu 已提交
98 99 100
    def create_scalar(block, value, dtype):
        return create_tensor(block, value, dtype, shape=[1])

Y
Yang Yu 已提交
101 102 103
    def create_tensor_with_batchsize(ref_var, value, dtype):
        assert isinstance(ref_var, Variable)
        value = float(value)
104 105
        block = current_block(ref_var)
        var = create_new_tmp_var(block, dtype)
106
        batch_dim = -1
107
        out_shape = []
108 109
        for i, d in enumerate(ref_var.shape):
            if d < 0:
110 111 112 113 114 115 116
                if batch_dim < 0:
                    batch_dim = i
                    out_shape.append(d)
                else:
                    out_shape.append(1)
            else:
                out_shape.append(d)
117
        assert batch_dim != -1
118 119 120 121 122 123 124 125 126 127
        block.append_op(type='fill_constant_batch_size_like',
                        outputs={'Out': [var]},
                        inputs={'Input': [ref_var]},
                        attrs={
                            'shape': out_shape,
                            'value': value,
                            'input_dim_idx': batch_dim,
                            'output_dim_idx': batch_dim
                        },
                        stop_gradient=True)
H
Hongyu Liu 已提交
128 129

        var.stop_gradient = True
Y
Yang Yu 已提交
130 131
        return var

132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
    @static_only
    def cpu(self):
        """ 
            Variable should not have cpu() and cuda() interface.
            But this interface can greatly facilitate dy2static.
            We do nothing here.
        """
        return self

    @static_only
    def cuda(self):
        """ 
            Variable should not have cpu() and cuda() interface.
            But this interface can greatly facilitate dy2static.
            We do nothing here.
        """
        return self

Y
Yang Yu 已提交
150 151
    def astype(self, dtype):
        """
J
Jiabin Yang 已提交
152 153 154
        **Notes**:
            **The variable must be a** :ref:`api_fluid_Tensor`

Y
Yang Yu 已提交
155
        Cast a variable to a specified data type.
J
Jiabin Yang 已提交
156

Y
Yang Yu 已提交
157
        Args:
J
Jiabin Yang 已提交
158

Y
Yang Yu 已提交
159
            self(Variable): The source variable
J
Jiabin Yang 已提交
160 161

            dtype: The target data type
Y
Yang Yu 已提交
162 163

        Returns:
J
Jiabin Yang 已提交
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
            Variable: Variable with new dtype

        Examples:
            In Static Graph Mode:

            .. code-block:: python

                import paddle.fluid as fluid

                startup_prog = fluid.Program()
                main_prog = fluid.Program()
                with fluid.program_guard(startup_prog, main_prog):
                    original_variable = fluid.data(name = "new_variable", shape=[2,2], dtype='float32')
                    new_variable = original_variable.astype('int64')
                    print("new var's dtype is: {}".format(new_variable.dtype))

            In Dygraph Mode:

            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    original_variable = fluid.dygraph.to_variable(x)
                    print("original var's dtype is: {}, numpy dtype is {}".format(original_variable.dtype, original_variable.numpy().dtype))
                    new_variable = original_variable.astype('int64')
                    print("new var's dtype is: {}, numpy dtype is {}".format(new_variable.dtype, new_variable.numpy().dtype))

Y
Yang Yu 已提交
194
        """
195 196
        block = current_block(self)
        out = create_new_tmp_var(block, dtype)
197 198 199 200 201 202 203
        block.append_op(type="cast",
                        inputs={"X": [self]},
                        outputs={"Out": [out]},
                        attrs={
                            "in_dtype": self.dtype,
                            "out_dtype": out.dtype
                        })
204
        out.stop_gradient = self.stop_gradient
Y
Yang Yu 已提交
205 206
        return out

207 208 209 210 211 212 213 214
    @static_only
    def append(self, var):
        """
         **Notes**:
            **The type variable must be LoD Tensor Array.
        
        """
        if not isinstance(var, Variable):
215 216 217 218 219 220 221 222 223
            if in_declarative_mode():
                """ in dy2static mode, x may be tensorable values such as int, float, np.array
                """
                from paddle.tensor.creation import to_tensor
                var = to_tensor(var)
            else:
                raise TypeError(
                    "Required input var should be Variable, but received {}".
                    format(type(var)))
224 225
        if self.type != core.VarDesc.VarType.LOD_TENSOR_ARRAY:
            raise TypeError(
226 227
                "Only Variable with VarType.LOD_TENSOR_ARRAY support `append` method, but received type: {}"
                .format(self.type))
228 229
        array_write(x=var, i=array_length(self), array=self)

230 231 232 233 234 235 236 237 238 239 240 241
    @static_only
    def _item(self):
        """ 
        In order to be compatible with the item interface introduced by the dynamic graph, it does nothing but returns self. 
        It will check that the shape must be a 1-D tensor
        """
        if len(self.shape) > 1:
            raise TypeError(
                "Required input var should be 1-D Variable, but received {}".
                format(self.shape))
        return self

242 243 244
    @static_only
    def pop(self, *args):
        """
245 246 247 248 249 250 251 252 253
        The type variable must be LoD Tensor Array.
        When self is LoDTensorArray, calling pop is similar to Python's pop on list. 
        This interface is used to simplify dygraph to static graph operations.

        Args:
            self(Variable): The source variable, which must be LOD_TENSOR_ARRAY
            *args: optional, a int means index.
        Returns:
            Variable: self[index]
254 255 256 257 258 259 260 261
        """
        from paddle.fluid.dygraph.dygraph_to_static.convert_operators import _run_paddle_pop
        if self.type != core.VarDesc.VarType.LOD_TENSOR_ARRAY:
            raise TypeError(
                "Only Variable with VarType.LOD_TENSOR_ARRAY support `append` method, but received type: {}"
                .format(self.type))
        return _run_paddle_pop(self, *args)

262
    def _scalar_op_(var, scale, bias):
263 264
        block = current_block(var)
        out = create_new_tmp_var(block, var.dtype)
265 266 267 268 269 270 271
        block.append_op(type="scale",
                        inputs={"X": [var]},
                        outputs={"Out": [out]},
                        attrs={
                            "scale": scale,
                            "bias": bias
                        })
272 273
        return out

274
    def _neg_(var):
275
        return _scalar_op_(var, -1.0, 0.0)
276

277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
    @property
    def _ndim_(self):
        """
        Returns the dimension of current Variable

        Returns:
            the dimension

        Examples:
            .. code-block:: python

                import paddle

                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])
                # print the dimension of the Variable
                print(x.ndim)
        """
        return len(self.shape)

299 300
    def _scalar_add_(var, value):
        return _scalar_op_(var, 1.0, value)
301

302 303
    def _scalar_sub_(var, value):
        return _scalar_op_(var, 1.0, -value)
304

305 306
    def _scalar_rsub_(var, value):
        return _scalar_op_(var, -1.0, value)
307

308 309
    def _scalar_mul_(var, value):
        return _scalar_op_(var, value, 0.0)
310

311 312 313
    def _scalar_div_(var, value):
        return _scalar_op_(var, 1.0 / value, 0.0)

314 315 316 317
    def _binary_creator_(method_name,
                         op_type,
                         reverse=False,
                         scalar_method=None):
318

Y
Yang Yu 已提交
319
        def __impl__(self, other_var):
320 321 322 323 324 325 326 327 328
            # 1. scalar exists cases
            # we need combine the tensor.dtype and scalar.dtype, cast correct object
            if isinstance(other_var, float):
                # in all cases(+, -, *, /, **, //, %), we need cast tensor.dtype to float
                if self.dtype in _supported_int_dtype_:
                    self = astype(self, 'float32')
                # here use `scale` replace `elementwise` to get better performance
                # but only +, -, *, / can use this method
                if scalar_method is not None:
329
                    return scalar_method(self, other_var)
330 331 332 333 334 335
            elif isinstance(other_var, int):
                # in all cases(+, -, *, /, **, //, %), we can cast it to float
                # because the output tensor.dtype depend on the type of input tensor
                other_var = float(other_var)
                # division is a special case
                # NOTE(chenweihang): because we cast tensor to float32 instead float64,
336 337 338
                # the division result can only guarantee the numerical accuracy of 6 digits
                # after the decimal point. The result of numpy calculation is of float64 type,
                # so the calculation result here and the calculation result of numpy are
339 340 341 342 343
                # different after 6 decimal point. If necessary, we can also use float64 here.
                # torch's behavior here is consistent with ours
                if op_type == 'elementwise_div' and self.dtype in _supported_int_dtype_:
                    self = astype(self, 'float32')
                # here use `scale` replace `elementwise` to get better performance
344
                # but only +, -, *, / can use this method
345 346 347 348 349
                if scalar_method is not None:
                    return scalar_method(self, other_var)
            else:
                # do nothing
                pass
350

351
            # 2. create variable for scalar
Y
Yang Yu 已提交
352 353 354 355 356 357 358 359 360
            lhs_dtype = safe_get_dtype(self)
            if not isinstance(other_var, Variable):
                if reverse:
                    has_batch_size = False
                    for elem in self.shape:
                        if elem < 0:
                            has_batch_size = True
                            break
                    if not has_batch_size:
361 362 363 364
                        other_var = create_tensor(current_block(self),
                                                  other_var,
                                                  dtype=lhs_dtype,
                                                  shape=self.shape)
Y
Yang Yu 已提交
365 366 367 368
                    else:
                        other_var = create_tensor_with_batchsize(
                            self, other_var, lhs_dtype)
                else:
369
                    # add fill_op to current_block
370 371 372
                    other_var = create_scalar(current_block(self),
                                              value=other_var,
                                              dtype=lhs_dtype)
Y
Yang Yu 已提交
373

374
            # 3. unify right var type to left var
Y
Yang Yu 已提交
375 376 377 378 379 380 381 382
            rhs_dtype = safe_get_dtype(other_var)
            if lhs_dtype != rhs_dtype:
                other_var = astype(other_var, lhs_dtype)
            if reverse:
                tmp = self
                self = other_var
                other_var = tmp

383 384 385 386 387 388
            # NOTE(zhiqiu): the output of compare operator should be bool.
            if method_name in compare_ops:
                out = create_new_tmp_var(current_block(self), dtype="bool")
            else:
                out = create_new_tmp_var(current_block(self), dtype=lhs_dtype)

389 390
            axis = -1
            if other_var.shape[0] == -1:
391 392 393
                stack = inspect.stack()[1]
                file_name = stack[1]
                line_num = stack[2]
394
                warnings.warn(
395 396 397 398
                    "%s:%s\nThe behavior of expression %s has been unified with %s(X, Y, axis=-1) from Paddle 2.0. "
                    "If your code works well in the older versions but crashes in this version, try to use "
                    "%s(X, Y, axis=0) instead of %s. This transitional warning will be dropped in the future."
                    % (file_name, line_num, EXPRESSION_MAP[method_name],
399 400
                       op_type, op_type, EXPRESSION_MAP[method_name]),
                    category=DeprecationWarning)
401 402 403 404 405 406 407
            current_block(self).append_op(type=op_type,
                                          inputs={
                                              'X': [self],
                                              'Y': [other_var]
                                          },
                                          outputs={'Out': out},
                                          attrs={'axis': axis})
Y
Yang Yu 已提交
408 409 410 411 412 413 414 415
            return out

        comment = OpProtoHolder.instance().get_op_proto(op_type).comment

        __impl__.__doc__ = """
        {0}
        Args:
            self(Variable): left hand variable
416
            other_var(Variable|float|int): right hand variable
Y
Yang Yu 已提交
417 418 419 420 421 422 423

        Returns:
            Variable
        """.format(comment)
        __impl__.__name__ = method_name
        return __impl__

424 425 426 427
    variable_methods = [
        #   b=-a
        ('__neg__', _neg_),
        ('astype', astype),
428 429
        ('cpu', cpu),
        ('cuda', cuda),
430
        ('append', append),
431
        ('item', _item),
432
        ('pop', pop),
433 434 435
        ('dim', lambda x: len(x.shape)),
        ('ndimension', lambda x: len(x.shape)),
        ('ndim', _ndim_),
436 437
        ('__add__',
         _binary_creator_('__add__', 'elementwise_add', False, _scalar_add_)),
438 439 440
        #  a+b == b+a. Do not need to reverse explicitly
        ('__radd__',
         _binary_creator_('__radd__', 'elementwise_add', False, _scalar_add_)),
441 442 443 444 445 446
        ('__sub__',
         _binary_creator_('__sub__', 'elementwise_sub', False, _scalar_sub_)),
        ('__rsub__',
         _binary_creator_('__rsub__', 'elementwise_sub', True, _scalar_rsub_)),
        ('__mul__',
         _binary_creator_('__mul__', 'elementwise_mul', False, _scalar_mul_)),
447 448 449
        #  a*b == b*a. Do not need to reverse explicitly
        ('__rmul__',
         _binary_creator_('__rmul__', 'elementwise_mul', False, _scalar_mul_)),
450 451 452 453 454
        ('__div__',
         _binary_creator_('__div__', 'elementwise_div', False, _scalar_div_)),
        ('__truediv__',
         _binary_creator_('__truediv__', 'elementwise_div', False,
                          _scalar_div_)),
455 456
        ('__rdiv__', _binary_creator_('__rdiv__', 'elementwise_div', True,
                                      None)),
457 458
        ('__rtruediv__',
         _binary_creator_('__rtruediv__', 'elementwise_div', True, None)),
459 460 461 462
        ('__pow__', _binary_creator_('__pow__', 'elementwise_pow', False,
                                     None)),
        ('__rpow__', _binary_creator_('__rpow__', 'elementwise_pow', True,
                                      None)),
463 464
        ('__floordiv__',
         _binary_creator_('__floordiv__', 'elementwise_floordiv', False, None)),
S
ShenLiang 已提交
465 466
        ('__mod__', _binary_creator_('__mod__', 'elementwise_mod', False,
                                     None)),
467 468
        ('__matmul__', _binary_creator_('__matmul__', "matmul_v2", False,
                                        None)),
469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485
        #  for logical compare
        ('__eq__', _binary_creator_('__eq__', 'equal', False, None)),
        ('__ne__', _binary_creator_('__ne__', 'not_equal', False, None)),
        ('__lt__', _binary_creator_('__lt__', 'less_than', False, None)),
        ('__le__', _binary_creator_('__le__', 'less_equal', False, None)),
        ('__gt__', _binary_creator_('__gt__', 'greater_than', False, None)),
        ('__ge__', _binary_creator_('__ge__', 'greater_equal', False, None))
    ]

    global _already_patch_variable
    if not _already_patch_variable:
        for method in variable_methods:
            method_name = method[0]
            method_impl = method[1]
            setattr(Variable, method_name, method_impl)
    else:
        import paddle.tensor
486
        for method_name in paddle.tensor.tensor_method_func:
487 488 489 490
            if hasattr(Variable, method_name): continue
            method_impl = getattr(paddle.tensor, method_name, None)
            if method_impl: setattr(Variable, method_name, method_impl)

491 492 493 494
        for magic_method, origin_method in paddle.tensor.magic_method_func:
            impl = getattr(paddle.tensor, origin_method, None)
            if impl: setattr(Variable, magic_method, impl)

495
    _already_patch_variable = True