multihead_matmul_op.cu 9.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <paddle/fluid/platform/device_context.h>
#include <algorithm>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/memory/malloc.h"
19
#include "paddle/fluid/operators/math/bert_encoder_functor.h"
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
#include "paddle/fluid/operators/math/blas.h"

namespace paddle {
namespace operators {

template <typename T>
__global__ void transpose(T *src, T *dst, const int batch_size,
                          const int seq_len, const int head_num,
                          const int size_per_head) {
  int batch_id = blockIdx.x / (head_num * seq_len);
  int seq_id = blockIdx.x % seq_len;
  int head_id = (blockIdx.x % (head_num * seq_len)) / seq_len;
  dst[batch_id * (head_num * seq_len * size_per_head) +
      seq_id * head_num * size_per_head + head_id * size_per_head +
      threadIdx.x] = src[blockIdx.x * size_per_head + threadIdx.x];
}

37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
template <typename T>
inline __device__ T add_func(T a, T b);

template <>
__device__ float add_func<float>(float a, float b) {
  return a + b;
}

template <>
__device__ float2 add_func<float2>(float2 a, float2 b) {
  float2 c;
  c.x = a.x + b.x;
  c.y = a.y + b.y;
  return c;
}

template <>
__device__ float4 add_func<float4>(float4 a, float4 b) {
  float4 c;
  c.x = a.x + b.x;
  c.y = a.y + b.y;
  c.z = a.z + b.z;
  c.w = a.w + b.w;
  return c;
61 62 63
}

template <typename T>
64 65
__global__ void TransposeQkvKernel(const int H, const T *input, const T *bias,
                                   T *output) {
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
  // Input: BxSx3xNxH
  // Bias: 3xSxB
  // Output: 3xBxNxSxH
  int n = threadIdx.y;
  int s = blockIdx.x;
  int b = blockIdx.y;
  int m = blockIdx.z;

  const int N = blockDim.y;
  const int S = gridDim.x;
  const int B = gridDim.y;

  const int NH = N * H;
  const int NHS = NH * S;
  const int in_offset = n * H + m * NH + s * 3 * NH + b * NHS * 3;
  const int bias_offset = m * NH + n * H;
  const int out_offset = s * H + n * S * H + b * NHS + m * NHS * B;

  const int i = threadIdx.x;
  output[out_offset + i] =
      add_func(input[in_offset + i], bias[bias_offset + i]);
}
88

89 90
void TransQKVWithBias(const int batch, const int seq_len, const int head_size,
                      const int head_num, const float *input, const float *bias,
91
                      float *output, gpuStream_t stream) {
92
  // BxSx3xNxH + 3xNxH -> 3xBxNxSxH
Z
Zhaolong Xing 已提交
93
  int scratch_size = batch * head_num * seq_len * seq_len;
94
  const dim3 grid(seq_len, batch, 3);
Z
Zhaolong Xing 已提交
95 96
  // scratch % 4 == 0 to ensure the alignment
  if (head_size % 4 == 0 && scratch_size % 4 == 0) {
97 98 99 100 101 102 103 104 105 106 107
    const int h = head_size / 4;
    const float4 *input4 = reinterpret_cast<const float4 *>(input);
    const float4 *bias4 = reinterpret_cast<const float4 *>(bias);
    float4 *output4 = reinterpret_cast<float4 *>(output);
    const dim3 block(h, head_num, 1);

    // limit h * head_num to max block size(1024).
    PADDLE_ENFORCE_LE(h * head_num, 1024,
                      platform::errors::InvalidArgument(
                          "head_num (%d) * head_size (%d) should <= %d",
                          head_num, head_size, 1024 * 4));
108 109
    TransposeQkvKernel<float4><<<grid, block, 0, stream>>>(h, input4, bias4,
                                                           output4);
Z
Zhaolong Xing 已提交
110
  } else if (head_size % 2 == 0 && scratch_size % 2 == 0) {
111 112 113 114 115 116 117 118 119 120
    const int h = head_size / 2;
    const float2 *input2 = reinterpret_cast<const float2 *>(input);
    const float2 *bias2 = reinterpret_cast<const float2 *>(bias);
    float2 *output2 = reinterpret_cast<float2 *>(output);
    const dim3 block(h, head_num, 1);
    // limit h * head_num to max block size(1024).
    PADDLE_ENFORCE_LE(h * head_num, 1024,
                      platform::errors::InvalidArgument(
                          "head_num (%d) * head_size (%d) should <= %d",
                          head_num, head_size, 1024 * 2));
121 122
    TransposeQkvKernel<float2><<<grid, block, 0, stream>>>(h, input2, bias2,
                                                           output2);
123 124 125 126 127 128 129
  } else {
    const dim3 block(head_size, head_num, 1);
    // limit head_size * head_num to max block size(1024).
    PADDLE_ENFORCE_LE(head_size * head_num, 1024,
                      platform::errors::InvalidArgument(
                          "head_num (%d) * head_size (%d) should <= %d",
                          head_num, head_size, 1024));
130 131
    TransposeQkvKernel<float><<<grid, block, 0, stream>>>(head_size, input,
                                                          bias, output);
132 133
  }
}
134

F
feng_shuai 已提交
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
inline int round_up(int seq_len, int multiple = 32) {
  PADDLE_ENFORCE_GT(
      multiple, 0,
      platform::errors::InvalidArgument(
          "multiple should be a positive number,but it's (%d)", multiple));
  return ((seq_len + multiple - 1) / multiple) * multiple;
}

template <typename T>
__global__ void broadcast(const T *src, T *dst, const int seq_len,
                          const int head_num) {
  int batch_id = blockIdx.x / (head_num * seq_len);
  int dst_offset = blockIdx.x * seq_len;
  if (threadIdx.x < seq_len) {
    dst[threadIdx.x + dst_offset] = src[threadIdx.x + batch_id * seq_len];
  }
}

153
template <typename DeviceContext, typename T>
154
class MultiHeadMatMulV2Kernel : public framework::OpKernel<T> {
155 156
 public:
  void Compute(const framework::ExecutionContext &context) const override {
157 158 159 160
    using Tensor = framework::Tensor;
    auto *input = context.Input<framework::Tensor>("Input");
    auto *w = context.Input<framework::Tensor>("W");
    auto *bias = context.Input<framework::Tensor>("Bias");
161 162
    auto &bias_qk = GET_DATA_SAFELY(context.Input<framework::Tensor>("BiasQK"),
                                    "Input", "BiasQK", "MultiHeadMatMulV2");
163

164 165 166
    auto *input_d = input->data<T>();
    auto *w_d = w->data<T>();
    auto *bias_d = bias->data<T>();
167
    auto *bias_qk_d = bias_qk.template data<T>();
168 169 170 171 172
    T scale = static_cast<T>(context.Attr<float>("alpha"));

    int head_number = context.Attr<int>("head_number");
    // compute q*k with eltadd
    auto &device_ctx = context.template device_context<DeviceContext>();
F
feng_shuai 已提交
173
    auto stream = device_ctx.stream();
174 175 176 177 178 179 180
    // should be (B * S * hidden)
    auto input_dims = input->dims();
    // shouble be (hidden * 3 * all_head_size)
    auto w_dims = w->dims();
    int batch = input_dims[0];
    int seq_len = input_dims[1];
    int hidden = input_dims[2];
F
feng_shuai 已提交
181 182 183 184 185 186 187 188 189 190 191
    Tensor temp_bias_tensor;
    // if bias_qk is[batch, 1, 1, seq_len], the bias_qk_d need to be broadcasted
    if (bias_qk.numel() == (batch * seq_len)) {
      temp_bias_tensor.Resize({batch * head_number * seq_len * seq_len});
      auto *temp_qk_bias = temp_bias_tensor.mutable_data<T>(context.GetPlace());
      int grid = batch * head_number * seq_len;
      int block = round_up(seq_len);
      broadcast<<<grid, block, 0, stream>>>(bias_qk_d, temp_qk_bias, seq_len,
                                            head_number);
      bias_qk_d = static_cast<const T *>(temp_qk_bias);
    }
192 193 194
    int all_head_size = w_dims[2];
    int head_size = all_head_size / head_number;

195 196 197 198
    auto *out = context.Output<framework::Tensor>("Out");
    out->Resize({batch, seq_len, all_head_size});
    auto *output_d = out->mutable_data<T>(context.GetPlace());

199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
    // (B*S, hidden)
    const Tensor input_matrix =
        framework::ReshapeToMatrix(*input, 2 /*x_num_col_dims */);
    // (hidden, 3 * all_head_size)
    const Tensor w_matrix =
        framework::ReshapeToMatrix(*w, 1 /*y_num_col_dims*/);

    Tensor temp_out_tensor;
    auto temp_out_dims =
        framework::make_ddim({batch, seq_len, 3, head_number, head_size});
    temp_out_tensor.Resize({batch * seq_len, framework::product(temp_out_dims) /
                                                 (batch * seq_len)});
    auto *temp_out_data = temp_out_tensor.mutable_data<T>(context.GetPlace());

    // (B * S, hidden) * (hidden, 3 * N * H) -> (B * S * 3 * N * H)
    auto blas = math::GetBlas<platform::CUDADeviceContext, T>(device_ctx);
    blas.MatMul(input_matrix, w_matrix, &temp_out_tensor);

    // temp_out_tensor.Resize(temp_out_dims);

    Tensor multihead_temp_tensor;
    // B * head_number * S * S * 1 + B * S * 3 * N * H
    int scratch_size = batch * head_number * seq_len * seq_len * 1;
    multihead_temp_tensor.Resize({scratch_size + temp_out_tensor.numel()});
    auto *multihead_temp_data =
        multihead_temp_tensor.mutable_data<T>(context.GetPlace());
    auto *qkptr = multihead_temp_data;
    auto *tptr = multihead_temp_data + scratch_size;

    // Do the transpose with bias.
    // BxSx3xNxH => tptr: 3xBxNxSxH.
    TransQKVWithBias(batch, seq_len, head_size, head_number, temp_out_data,
                     bias_d, tptr, stream);

233 234 235
    math::MultiHeadGPUComputeFunctor<T> multihead_compute_func;
    multihead_compute_func(device_ctx, batch, seq_len, head_number, head_size,
                           qkptr, bias_qk_d, tptr, scale, T(0.0));
236 237 238 239 240

    int grid = batch * head_number * seq_len;
    int block = head_size;
    transpose<T><<<grid, block, 0, stream>>>(tptr, output_d, batch, seq_len,
                                             head_number, head_size);
241 242 243 244 245 246 247 248 249
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP_CUDA_KERNEL(
    multihead_matmul,
250
    ops::MultiHeadMatMulV2Kernel<paddle::platform::CUDADeviceContext, float>);