adamw.py 9.2 KB
Newer Older
M
MRXLT 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from .optimizer import Optimizer
from .adam import Adam
17
from ..fluid import core
M
MRXLT 已提交
18
from ..fluid import framework
19
from ..fluid.dygraph import base as imperative_base
M
MRXLT 已提交
20
import paddle
21

22 23
__all__ = []

M
MRXLT 已提交
24

M
MRXLT 已提交
25
class AdamW(Adam):
26
    r"""
27
    The AdamW optimizer is implemented based on the AdamW Optimization
M
MRXLT 已提交
28 29 30 31 32 33 34 35
    in paper `DECOUPLED WEIGHT DECAY REGULARIZATION <https://arxiv.org/pdf/1711.05101.pdf>`_.
    it can resolves the problem of L2 regularization failure in the Adam optimizer.

    .. math::

        t & = t + 1

        moment\_1\_out & = {\\beta}_1 * moment\_1 + (1 - {\\beta}_1) * grad
36

M
MRXLT 已提交
37 38 39 40 41 42 43 44 45
        moemnt\_2\_out & = {\\beta}_2 * moment\_2 + (1 - {\\beta}_2) * grad * grad

        learning\_rate & = learning\_rate * \\
            \\frac{\sqrt{1 - {\\beta}_2^t}}{1 - {beta}_1^t}

        param\_out & = param - learning\_rate * (\\frac{moment\_1}{\sqrt{moment\_2} + \epsilon} + \lambda * param)


    Args:
46 47
        learning_rate (float|LRScheduler, optional): The learning rate used to update ``Parameter``.
            It can be a float value or a LRScheduler. The default value is 0.001.
48 49 50
        parameters (list|tuple, optional): List/Tuple of ``Tensor`` names to update to minimize ``loss``. \
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
M
MRXLT 已提交
51 52 53 54 55 56 57 58
        beta1 (float|Tensor, optional): The exponential decay rate for the 1st moment estimates.
            It should be a float number or a Tensor with shape [1] and data type as float32.
            The default value is 0.9.
        beta2 (float|Tensor, optional): The exponential decay rate for the 2nd moment estimates.
            It should be a float number or a Tensor with shape [1] and data type as float32.
            The default value is 0.999.
        epsilon (float, optional): A small float value for numerical stability.
            The default value is 1e-08.
M
MRXLT 已提交
59 60
        weight_decay (float|Tensor, optional): The weight decay coefficient, it can be float or Tensor. The default value is 0.01.
        apply_decay_param_fun (function|None, optional): If it is not None,
61
            only tensors that makes apply_decay_param_fun(Tensor.name)==True
H
hutuxian 已提交
62
            will be updated with weight decay. It only works when we want to specify tensors.
M
MRXLT 已提交
63
            Default: None.
64 65 66
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of
            some derived class of ``GradientClipBase`` . There are three cliping strategies
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` ,
M
MRXLT 已提交
67 68 69 70 71 72 73 74
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
        lazy_mode (bool, optional): The official Adam algorithm has two moving-average accumulators.
            The accumulators are updated at every step. Every element of the two moving-average
            is updated in both dense mode and sparse mode. If the size of parameter is very large,
            then the update may be very slow. The lazy mode only update the element that has
            gradient in current mini-batch, so it will be much more faster. But this mode has
            different semantics with the original Adam algorithm and may lead to different result.
            The default value is False.
75
        multi_precision (bool, optional): Whether to use multi-precision during weight updating. Default is false.
76 77 78
        name (str, optional): Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name`.
            The default value is None.
M
MRXLT 已提交
79 80 81 82 83
    **Notes**:
        **Currently, AdamW doesn't support sparse parameter optimization.**

    Examples:
        .. code-block:: python
C
Chen Long 已提交
84
            
M
MRXLT 已提交
85 86 87
            import paddle

            linear = paddle.nn.Linear(10, 10)
88
            inp = paddle.rand([10,10], dtype="float32")
M
MRXLT 已提交
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
            out = linear(inp)
            loss = paddle.mean(out)

            beta1 = paddle.to_tensor([0.9], dtype="float32")
            beta2 = paddle.to_tensor([0.99], dtype="float32")

            adam = paddle.optimizer.AdamW(learning_rate=0.1,
                    parameters=linear.parameters(),
                    beta1=beta1,
                    beta2=beta2,
                    weight_decay=0.01)
            out.backward()
            adam.step()
            adam.clear_grad()

    """

    def __init__(self,
                 learning_rate=0.001,
                 beta1=0.9,
                 beta2=0.999,
                 epsilon=1e-8,
M
MRXLT 已提交
111 112
                 parameters=None,
                 weight_decay=0.01,
M
MRXLT 已提交
113 114
                 apply_decay_param_fun=None,
                 grad_clip=None,
115
                 lazy_mode=False,
116
                 multi_precision=False,
117
                 name=None):
M
MRXLT 已提交
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
        assert learning_rate is not None
        assert beta1 is not None
        assert beta2 is not None
        assert epsilon is not None
        if not 0 <= beta1 < 1:
            raise ValueError("Invaild value of beta1, expect beta1 in [0,1).")
        if not 0 <= beta2 < 1:
            raise ValueError("Invaild value of beta2, expect beta2 in [0,1).")
        if not 0 <= epsilon:
            raise ValueError("Invaild value of epsilon, expect epsilon >= 0.")
        coeff = weight_decay
        if not isinstance(coeff, float) and \
                not isinstance(coeff, framework.Variable):
            raise TypeError("coeff should be float or Tensor.")
        self._params_name = set()
        self._apply_decay_param_fun = apply_decay_param_fun
        self._coeff = coeff
W
WangXi 已提交
135
        self._lr_to_coeff = dict()
M
MRXLT 已提交
136
        super(AdamW, self).__init__(
M
MRXLT 已提交
137 138 139 140 141 142 143
            learning_rate=learning_rate,
            parameters=parameters,
            beta1=beta1,
            beta2=beta2,
            epsilon=epsilon,
            grad_clip=grad_clip,
            name=name,
144 145
            lazy_mode=lazy_mode,
            multi_precision=multi_precision)
M
MRXLT 已提交
146

W
WangXi 已提交
147
    def _append_decoupled_weight_decay(self, block, param_and_grad):
M
MRXLT 已提交
148
        """
W
WangXi 已提交
149 150
        Add decoupled weight decay op.
            parameter = parameter - parameter * coeff * lr
M
MRXLT 已提交
151 152

        Args:
W
WangXi 已提交
153 154
            block: block in which variable is to be created
            param_and_grad: (parameters, gradients) pairs,
M
MRXLT 已提交
155 156 157 158
                the parameters need to decay.
        Raises:
            Exception: The type of coeff and parameter is not consistent.
        """
W
WangXi 已提交
159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
        param, grad = param_and_grad

        if self._apply_decay_param_fun is not None \
                and not self._apply_decay_param_fun(param.name):
            return

        if isinstance(self._learning_rate, float):
            learning_rate = self._learning_rate
        else:
            # NOTE. We add this function to the _append_optimize_op(),
            # for we must make sure _create_param_lr() be called after
            # optimizer._create_global_learning_rate().
            learning_rate = self._create_param_lr(param_and_grad)

        with block.program._optimized_guard(
            [param, grad]), framework.name_scope('weight decay'):
            self._params_name.add(param.name)

177 178 179 180
            # If it has been calculated, the result will be reused.
            # NOTE(wangxi): In dygraph mode, apply_gradient will be executed
            # every step, so need clear _lr_to_coeff every step,
            # we do this in _create_optimization_pass
W
WangXi 已提交
181 182 183 184 185
            decay_coeff = self._lr_to_coeff.get(learning_rate, None)
            if decay_coeff is None:
                decay_coeff = 1.0 - learning_rate * self._coeff
                self._lr_to_coeff[learning_rate] = decay_coeff

186 187 188 189 190 191 192 193 194 195
            find_master = (self._multi_precision and
                           param.dtype == core.VarDesc.VarType.FP16)
            if find_master:
                master_weight = self._master_weights[param.name]
                scaled_param = master_weight * decay_coeff
                paddle.fluid.layers.assign(
                    input=scaled_param, output=master_weight)
            else:
                scaled_param = param * decay_coeff
                paddle.fluid.layers.assign(input=scaled_param, output=param)
W
WangXi 已提交
196 197 198 199

    def _append_optimize_op(self, block, param_and_grad):
        self._append_decoupled_weight_decay(block, param_and_grad)
        return super(AdamW, self)._append_optimize_op(block, param_and_grad)
M
MRXLT 已提交
200

201 202 203 204 205 206 207
    def _create_optimization_pass(self, parameters_and_grads):
        optimize_ops = super(
            AdamW, self)._create_optimization_pass(parameters_and_grads)
        # In dygraph mode, clear _lr_to_coeff after applied gradient
        self._lr_to_coeff = dict()
        return optimize_ops

M
MRXLT 已提交
208 209
    def __str__(self):
        return " ".join(["Weight Decay, params:", ",".join(self._params_name)])