rank_loss_op.cc 5.1 KB
Newer Older
Y
Yibing Liu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#include "paddle/operators/rank_loss_op.h"

namespace paddle {
namespace operators {

class RankLossOp : public framework::OperatorWithKernel {
 public:
  RankLossOp(const std::string &type, const framework::VariableNameMap &inputs,
             const framework::VariableNameMap &outputs,
             const framework::AttributeMap &attrs)
      : OperatorWithKernel(type, inputs, outputs, attrs) {}

 protected:
  void InferShape(const framework::InferShapeContext &ctx) const override {
    // input check
Y
Yibing Liu 已提交
30 31 32 33 34 35 36 37 38 39 40
    PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("Label"),
                            "Input(Label) shouldn't be null");
    PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("Left"),
                            "Input(Left) shouldn't be null");
    PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("Right"),
                            "Input(Right) shouldn't be null");
    auto label_dims = ctx.Input<framework::Tensor>("Label")->dims();
    auto left_dims = ctx.Input<framework::Tensor>("Left")->dims();
    auto right_dims = ctx.Input<framework::Tensor>("Right")->dims();
    PADDLE_ENFORCE((label_dims == left_dims) && (left_dims == right_dims),
                   "All inputs must have the same size");
41 42
    PADDLE_ENFORCE((label_dims.size() == 2) && (label_dims[1] == 1),
                   "All inputs must be row vector with size batch_sizex1.");
Y
Yibing Liu 已提交
43
    ctx.Output<framework::LoDTensor>("Out")->Resize(label_dims);
Y
Yibing Liu 已提交
44 45 46 47 48 49 50 51
  }
};

class RankLossOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  RankLossOpMaker(framework::OpProto *proto,
                  framework::OpAttrChecker *op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
Y
Yibing Liu 已提交
52
    AddInput("Label",
53 54 55 56
             "The label indicating A ranked higher than B or not, row vector.");
    AddInput("Left", "The output of RankNet for doc A, vector.");
    AddInput("Right", "The output of RankNet for doc B, vetor");
    AddOutput("Out", "The output loss of RankLoss operator, vector.");
Y
Yibing Liu 已提交
57 58
    AddComment(R"DOC(RankLoss operator

Y
Yibing Liu 已提交
59 60 61 62 63 64 65 66 67 68
Rank loss operator for RankNet[1]. RankNet is a pairwise ranking model with
one training sample consisting of a pair of doc A and B, and the label P
indicating that A is ranked higher than B or not:

P = {0, 1} or {0, 0.5, 1}, where 0.5 means no information about the rank of
the input pair.

The RankLoss operator contains three inputs: Left (o_i), Right (o_j) and Label
(P_{i,j}), which represent the output of RankNet for two docs and the label
respectively, and yields the rank loss C_{i,j} by following the expression
Y
Yibing Liu 已提交
69 70 71 72 73 74 75

\f[
  C_{i,j} = -\tilde{P_{ij}} * o_{i,j} + log(1 + e^{o_{i,j}}) \\
  o_{i,j} =  o_i - o_j  \\
  \tilde{P_{i,j}} = \left \{0, 0.5, 1 \right \} \ or \ \left \{0, 1 \right \}
\f]

Y
Yibing Liu 已提交
76
The operator can take inputs of one sample or in batch.
Y
Yibing Liu 已提交
77

Y
Yibing Liu 已提交
78
[1]. Chris Burges, Tal Shaked, Erin Renshaw, et al. Learning to
Y
Yibing Liu 已提交
79 80
     Rank using Gradient Descent.
     http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf
Y
Yibing Liu 已提交
81 82 83 84 85 86 87 88 89 90 91 92 93 94
)DOC");
  }
};

class RankLossGradOp : public framework::OperatorWithKernel {
 public:
  RankLossGradOp(const std::string &type,
                 const framework::VariableNameMap &inputs,
                 const framework::VariableNameMap &outputs,
                 const framework::AttributeMap &attrs)
      : OperatorWithKernel(type, inputs, outputs, attrs) {}

 protected:
  void InferShape(const framework::InferShapeContext &ctx) const override {
Y
Yibing Liu 已提交
95 96 97 98 99 100
    PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("Label"),
                            "Input(Label) shouldn't be null.");
    PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("Left"),
                            "Input(Left) shouldn't be null.");
    PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("Right"),
                            "Input(Right) shouldn't be null.");
Y
Yibing Liu 已提交
101 102
    PADDLE_ENFORCE_NOT_NULL(ctx.InputVar(framework::GradVarName("Out")),
                            "Input(Out@GRAD) shouldn't be null.");
Y
Yibing Liu 已提交
103 104 105 106 107 108 109 110 111 112 113
    auto dims = ctx.Input<framework::Tensor>("Left")->dims();
    auto *left_grad =
        ctx.Output<framework::LoDTensor>(framework::GradVarName("Left"));
    auto *right_grad =
        ctx.Output<framework::LoDTensor>(framework::GradVarName("Right"));
    if (left_grad) {
      left_grad->Resize(dims);
    }
    if (right_grad) {
      right_grad->Resize(dims);
    }
Y
Yibing Liu 已提交
114 115 116 117 118 119 120 121 122 123 124 125 126
  }
};

}  // namespace operators
}  // namespace paddle
namespace ops = paddle::operators;

REGISTER_OP(rank_loss, ops::RankLossOp, ops::RankLossOpMaker, rank_loss_grad,
            ops::RankLossGradOp);
REGISTER_OP_CPU_KERNEL(rank_loss,
                       ops::RankLossKernel<paddle::platform::CPUPlace, float>);
REGISTER_OP_CPU_KERNEL(
    rank_loss_grad, ops::RankLossGradKernel<paddle::platform::CPUPlace, float>);