fused_dropout_common.h 4.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <cooperative_groups.h>
#include <cuda.h>
#include <curand_kernel.h>

#include "paddle/fluid/memory/memory.h"
#include "paddle/fluid/operators/amp/fp16_type_traits.h"
23
#include "paddle/fluid/operators/layer_norm_kernel.cu.h"
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
#include "paddle/fluid/platform/aligned_vector.h"
#include "paddle/fluid/platform/cuda_device_function.h"
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/float16.h"
#include "paddle/fluid/platform/gpu_launch_config.h"

namespace paddle {
namespace operators {

#define CACHE_LINE 128
#define MAX_CACHE_BYTES (CACHE_LINE / CHAR_BIT)

/**
 * get the threads for fused_residual_dropout_bias:
 * 1D blocks: blockDim.x = cols
 * 2D grids: gridDim.y = rows
 */
inline platform::GpuLaunchConfig Get1DBlocksAnd2DGrids(
    const platform::CUDADeviceContext &ctx, const uint32_t rows,
43 44
    const uint32_t cols, const int vec_size) {
  const uint32_t tmp_cols = cols / vec_size;
45 46 47 48 49 50 51 52 53 54 55 56 57
  int threads = std::max(
      static_cast<uint32_t>(32),
      std::min(tmp_cols, static_cast<uint32_t>(ctx.GetMaxThreadsPerBlock())));
  const auto blocks_x =
      std::max(static_cast<uint32_t>(1), (tmp_cols + threads - 1) / threads);
  const auto blocks_y = std::max(static_cast<uint32_t>(1), rows);
  platform::GpuLaunchConfig config;
  config.block_per_grid.x = blocks_x;
  config.block_per_grid.y = blocks_y;
  config.thread_per_block.x = threads;
  return config;
}

58 59 60 61 62 63 64
template <int VecSize>
__forceinline__ __device__ void RandVec(curandStatePhilox4_32_10_t *state,
                                        float *data);

template <>
__forceinline__ __device__ void RandVec<1>(curandStatePhilox4_32_10_t *state,
                                           float *data) {
65 66 67
  data[0] = curand_uniform(state);
}

68 69 70
template <>
__forceinline__ __device__ void RandVec<2>(curandStatePhilox4_32_10_t *state,
                                           float *data) {
71 72 73 74
  data[0] = curand_uniform(state);
  data[1] = curand_uniform(state);
}

75 76 77
template <>
__forceinline__ __device__ void RandVec<4>(curandStatePhilox4_32_10_t *state,
                                           float *data) {
78 79 80 81 82 83 84
  float4 rand4 = curand_uniform4(state);
  data[0] = rand4.x;
  data[1] = rand4.y;
  data[2] = rand4.w;
  data[3] = rand4.z;
}

85 86 87 88 89
template <>
__forceinline__ __device__ void RandVec<8>(curandStatePhilox4_32_10_t *state,
                                           float *data) {
  RandVec<4>(state, data);
  RandVec<4>(state, data + 4);
90 91
}

92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
template <typename T>
inline void SetZero(const platform::CUDADeviceContext &ctx, T *ptr,
                    const size_t size) {
  PADDLE_ENFORCE_CUDA_SUCCESS(
      cudaMemsetAsync(ptr, 0, size * sizeof(T), ctx.stream()));
}

/**
 * reduce the sum of 128 cols data by 8*VecSize warps
 */
template <typename T, int VecSize, int BlockSizeX, int BlockSizeY>
inline __device__ void CalculateDBias(const T *tmp_sum, T *dbias,
                                      const int cols) {
  // save temporary sum to cache and do transpose
  __shared__ T cache[BlockSizeX * VecSize][BlockSizeY];
  for (int i = 0; i < VecSize; i++) {
    cache[threadIdx.x * VecSize + i][threadIdx.y] = tmp_sum[i];
  }
  __syncthreads();
  // reduce sum
  T sum = static_cast<T>(0);
  int tid = threadIdx.y * blockDim.x + threadIdx.x;
  int x = tid >> 5;  // warp id
  int y = tid & 31;  // thread id on warp 0~31

  // need BlockSizeX * VecSize warps
  if (x < BlockSizeX * VecSize) {
// reduce 128 to 32
#pragma unroll
    for (int i = 0; i < (BlockSizeY >> 5); i++) {
      sum += cache[x][y + i * 32];
    }
  }

  // reduce 32 to 1
  sum = WarpReduceSum(sum);

  // save sum to dbias
  int bias_id = blockIdx.x * blockDim.x * VecSize + x;
  if (y == 0 && x < VecSize * BlockSizeX && bias_id < cols) {
    dbias[bias_id] = sum;
133 134 135 136 137
  }
}

}  // namespace operators
}  // namespace paddle