operator.h 16.4 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

D
dongzhihong 已提交
17
#include <algorithm>
18
#include <atomic>
Q
Qiao Longfei 已提交
19
#include <string>
D
dzhwinter 已提交
20
#include <tuple>
Q
Qiao Longfei 已提交
21 22 23
#include <unordered_map>
#include <vector>

Y
Yu Yang 已提交
24
#include "glog/logging.h"  // For VLOG
Y
Yi Wang 已提交
25 26 27 28 29 30 31 32 33 34 35
#include "paddle/fluid/framework/attribute.h"
#include "paddle/fluid/framework/block_desc.h"
#include "paddle/fluid/framework/framework.pb.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_info.h"
#include "paddle/fluid/framework/op_kernel_type.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/framework/selected_rows.h"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/variant.h"
Q
Qiao Longfei 已提交
36 37 38 39

namespace paddle {
namespace framework {

40
/// If a variable is a empty variable, that name will be used.
41
constexpr char kEmptyVarName[] = "@EMPTY@";
42 43 44

/// If a variable is a temporary variable, that name will be set in Python,
/// but it will be convert to a unique name in scope after OpCreator.
45
constexpr char kTempVarName[] = "@TEMP@";
46 47 48 49

/// If a variable's name has a certain suffix, it means that the
/// variable is the gradient of another varibale.
/// e.g. Variable "x@GRAD" is the gradient of varibale "x".
50
constexpr char kGradVarSuffix[] = "@GRAD";
51

M
minqiyang 已提交
52 53
constexpr size_t kGradVarSuffixSize = 5U;

54
/// Variables with this suffix are supposed to be filled up with zeros.
55
constexpr char kZeroVarSuffix[] = "@ZERO";
56

C
chengduo 已提交
57 58 59
/// Variables with this suffix are the new Gradient.
constexpr char kNewGradSuffix[] = "@NEWGRAD@";

D
dzhwinter 已提交
60
// define some kernel priority
61
/* Define multiple kernel type fallback order*/
D
dzhwinter 已提交
62 63
extern std::vector<std::tuple<platform::Place, LibraryType>> kKernelPriority;

64
inline std::string GradVarName(const std::string& var_name) {
M
minqiyang 已提交
65 66 67 68 69
  std::string result;
  result.reserve(var_name.size() + kGradVarSuffixSize);
  result += var_name;
  result += kGradVarSuffix;
  return result;
70 71
}

Q
qiaolongfei 已提交
72
proto::VarType::Type GetDataTypeOfVar(const Variable* var);
C
chengduo 已提交
73 74
const Tensor* GetLoDTensorOrSelectedRowsValueFromVar(const Variable& var);
Tensor* GetMutableLoDTensorOrSelectedRowsValueFromVar(Variable* var);
Q
qiaolongfei 已提交
75

Q
Qiao Longfei 已提交
76
class OperatorBase;
77
class ExecutionContext;
78

X
Xin Pan 已提交
79 80
class RuntimeContext {
 public:
X
Xin Pan 已提交
81 82
  RuntimeContext(const VariableNameMap& innames,
                 const VariableNameMap& outnames, const Scope& scope);
X
Xin Pan 已提交
83

X
Xin Pan 已提交
84 85 86 87
  RuntimeContext(const VariableValueMap& invars,
                 const VariableValueMap& outvars)
      : inputs(invars), outputs(outvars) {}

X
Xin Pan 已提交
88 89 90 91
  VariableValueMap inputs;
  VariableValueMap outputs;
};

Q
Qiao Longfei 已提交
92
/**
X
Xin Pan 已提交
93
 * OperatorBase has the basic elements that Net will call to do computation.
Q
Qiao Longfei 已提交
94 95 96 97 98 99
 * Only CreateOperator from OpRegistry will new Operator directly. User
 * should always construct a proto message OpDesc and call
 * OpRegistry::CreateOp(op_desc) to get an Operator instance.
 */
class OperatorBase {
 public:
Y
Yu Yang 已提交
100 101
  OperatorBase(const std::string& type, const VariableNameMap& inputs,
               const VariableNameMap& outputs, const AttributeMap& attrs);
102

Q
Qiao Longfei 已提交
103 104
  virtual ~OperatorBase() {}

105
  /// Executor will call this interface function to Run an op.
106 107
  //  The implementation should be written at RunImpl
  void Run(const Scope& scope, const platform::Place& place);
X
Xin Pan 已提交
108
  void Run(const RuntimeContext& ctx, const platform::Place& place);
Y
Yu Yang 已提交
109

T
typhoonzero 已提交
110 111 112
  // FIXME(typhoonzero): this is only used for recv_op to stop event_loop.
  virtual void Stop() {}

113 114 115
  /// if scope is not null, also show dimensions of arguments
  virtual std::string DebugStringEx(const Scope* scope) const;
  std::string DebugString() const { return DebugStringEx(nullptr); }
Y
Yu Yang 已提交
116

117 118
  virtual bool SupportGPU() const { return false; }

119 120
  const std::string& Type() const { return type_; }

M
Michal Gallus 已提交
121
  bool HasAttr(const std::string& name) const { return attrs_.count(name); }
122 123
  template <typename T>
  inline const T& Attr(const std::string& name) const {
M
minqiyang 已提交
124 125
    PADDLE_ENFORCE(attrs_.find(name) != attrs_.end(),
                   "%s should be in AttributeMap", name);
126 127 128
    return boost::get<T>(attrs_.at(name));
  }
  const AttributeMap& Attrs() const { return attrs_; }
D
dongzhihong 已提交
129

Y
Yu Yang 已提交
130 131
  const VariableNameMap& Inputs() const { return inputs_; }
  const VariableNameMap& Outputs() const { return outputs_; }
132

133
  bool HasInputs(const std::string& name) const;
Y
Yu Yang 已提交
134
  //! Get a input with argument's name described in `op_proto`
135
  std::string Input(const std::string& name) const;
Y
Yu Yang 已提交
136
  //! Get a input which has multiple variables.
Y
Yu Yang 已提交
137
  const std::vector<std::string>& Inputs(const std::string& name) const;
138
  //! Get all inputs variable names
Q
qijun 已提交
139 140
  std::vector<std::string> InputVars() const;

141
  bool HasOutputs(const std::string& name) const;
Y
Yu Yang 已提交
142
  //! Get a output with argument's name described in `op_proto`
143
  std::string Output(const std::string& name) const;
Y
Yu Yang 已提交
144 145
  //! Get an output which has multiple variables.
  //! TODO add a vector_view to prevent memory copy.
Y
Yu Yang 已提交
146
  const std::vector<std::string>& Outputs(const std::string& name) const;
147
  //! Get all outputs variable names
Y
Yu Yang 已提交
148
  virtual std::vector<std::string> OutputVars(bool has_intermediate) const;
149

150
  void SetIsCalledByExecutor(bool x) { run_by_executor_ = x; }
B
baojun-nervana 已提交
151
  virtual void RuntimeInferShape(const Scope& scope,
X
Xin Pan 已提交
152 153
                                 const platform::Place& place,
                                 const RuntimeContext& ctx) const {}
154

Q
qiaolongfei 已提交
155
 protected:
Q
Qiao Longfei 已提交
156
  std::string type_;
D
dongzhihong 已提交
157
  // NOTE: in case of OpGrad, inputs_ contains:
158
  // I (Inputs)
D
dongzhihong 已提交
159 160
  // O (Outputs)
  // OG (Output Gradients)
Y
Yu Yang 已提交
161
  VariableNameMap inputs_;
Y
Yu Yang 已提交
162

D
dongzhihong 已提交
163 164
  // NOTE: in case of OpGrad, outputs_ contains
  // IG (Inputs Gradients)
Y
Yu Yang 已提交
165
  VariableNameMap outputs_;
Q
Qiao Longfei 已提交
166
  AttributeMap attrs_;
167 168
  // Whether this operator executes in an Executor.
  bool run_by_executor_{true};
169 170 171 172

 private:
  void GenerateTemporaryNames();
  void CheckAllInputOutputSet() const;
173 174
  virtual void RunImpl(const Scope& scope,
                       const platform::Place& place) const = 0;
X
Xin Pan 已提交
175 176 177

  virtual void RunImpl(const RuntimeContext& ctx,
                       const platform::Place& place) const {}
Y
Yan Chunwei 已提交
178 179
};

180
class ExecutionContext {
Y
Yan Chunwei 已提交
181
 public:
182
  ExecutionContext(const OperatorBase& op, const Scope& scope,
X
Xin Pan 已提交
183 184 185
                   const platform::DeviceContext& device_context,
                   const RuntimeContext& ctx)
      : op_(op), scope_(scope), device_context_(device_context), ctx_(ctx) {}
186

Q
qiaolongfei 已提交
187 188 189 190
  const OperatorBase& op() const { return op_; }

  const Scope& scope() const { return scope_; }

Q
qiaolongfei 已提交
191
  template <typename T>
Y
Yu Yang 已提交
192 193
  inline const T& Attr(const std::string& name) const {
    return op_.Attr<T>(name);
Q
qiaolongfei 已提交
194 195
  }

196
  bool HasInput(const std::string& name) const;
197

198
  bool HasOutput(const std::string& name) const;
199

Y
Yu Yang 已提交
200
  size_t InputSize(const std::string& name) const {
Y
Yu Yang 已提交
201
    return op_.Inputs(name).size();
Y
Yan Chunwei 已提交
202 203
  }

Y
Yu Yang 已提交
204
  size_t OutputSize(const std::string& name) const {
Y
Yu Yang 已提交
205
    return op_.Outputs(name).size();
Y
Yan Chunwei 已提交
206 207
  }

X
Xin Pan 已提交
208
  const Variable* InputVar(const std::string& name) const;
Y
Yan Chunwei 已提交
209

X
Xin Pan 已提交
210
  Variable* OutputVar(const std::string& name) const;
Y
Yan Chunwei 已提交
211

212 213
  const std::vector<const Variable*> MultiInputVar(
      const std::string& name) const {
X
Xin Pan 已提交
214 215 216 217
    auto it = ctx_.inputs.find(name);
    if (it == ctx_.inputs.end()) {
      return {};
    }
Y
Yan Chunwei 已提交
218
    std::vector<const Variable*> res;
X
Xin Pan 已提交
219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
    res.reserve(it->second.size());
    std::transform(it->second.begin(), it->second.end(),
                   std::back_inserter(res),
                   [this](Variable* var) { return var; });
    return res;
  }

  std::vector<Variable*> MultiOutputVar(const std::string& name) const {
    auto names = op_.Outputs(name);
    auto it = ctx_.outputs.find(name);
    if (it == ctx_.outputs.end()) {
      return {};
    }
    return it->second;
  }

  const std::vector<Variable*> LegacyMultiInputVar(
      const std::string& name) const {
    auto names = op_.Inputs(name);
    std::vector<Variable*> res;
239
    res.reserve(names.size());
240 241
    std::transform(names.begin(), names.end(), std::back_inserter(res),
                   [this](const std::string& name) {
Y
Yu Yang 已提交
242 243
                     return name == kEmptyVarName ? nullptr
                                                  : scope_.FindVar(name);
244
                   });
Y
Yan Chunwei 已提交
245 246 247
    return res;
  }

X
Xin Pan 已提交
248
  std::vector<Variable*> LegacyMultiOutputVar(const std::string& name) const {
Y
Yan Chunwei 已提交
249
    auto names = op_.Outputs(name);
250
    std::vector<Variable*> res;
251
    res.reserve(names.size());
252 253
    std::transform(names.begin(), names.end(), std::back_inserter(res),
                   [this](const std::string& name) {
Y
Yu Yang 已提交
254 255
                     return name == kEmptyVarName ? nullptr
                                                  : scope_.FindVar(name);
256
                   });
Y
Yan Chunwei 已提交
257 258 259
    return res;
  }

260 261
  template <typename T>
  const T* Input(const std::string& name) const {
Y
Yu Yang 已提交
262
    auto* var = InputVar(name);
263
    return var == nullptr ? nullptr : &var->Get<T>();
264 265 266 267
  }

  template <typename T>
  T* Output(const std::string& name) const {
268
    auto var = OutputVar(name);
269
    return var == nullptr ? nullptr : var->GetMutable<T>();
270 271
  }

X
Xin Pan 已提交
272
  template <typename T>
X
clean  
Xin Pan 已提交
273 274
  const T* LegacyInput(const std::string& name) const {
    auto* var = LegacyInputVar(name);
X
Xin Pan 已提交
275 276 277 278
    return var == nullptr ? nullptr : &var->Get<T>();
  }

  template <typename T>
X
clean  
Xin Pan 已提交
279 280
  T* LegacyOutput(const std::string& name) const {
    auto var = LegacyOutputVar(name);
X
Xin Pan 已提交
281 282 283
    return var == nullptr ? nullptr : var->GetMutable<T>();
  }

X
clean  
Xin Pan 已提交
284
  const Variable* LegacyInputVar(const std::string& name) const;
X
Xin Pan 已提交
285

X
clean  
Xin Pan 已提交
286
  Variable* LegacyOutputVar(const std::string& name) const;
X
Xin Pan 已提交
287

288 289
  template <typename T>
  const std::vector<const T*> MultiInput(const std::string& name) const {
X
Xin Pan 已提交
290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
    auto it = ctx_.inputs.find(name);
    if (it == ctx_.inputs.end()) {
      return {};
    }
    const std::vector<Variable*>& vars = it->second;
    std::vector<const T*> res;
    res.reserve(vars.size());
    std::transform(vars.begin(), vars.end(), std::back_inserter(res),
                   [&](Variable* var) -> const T* {
                     return var == nullptr ? nullptr : &var->Get<T>();
                   });
    return res;
  }

  template <typename T>
  std::vector<T*> MultiOutput(const std::string& name) const {
    auto it = ctx_.outputs.find(name);
    if (it == ctx_.outputs.end()) {
      return {};
    }
    const std::vector<Variable*>& vars = it->second;
    std::vector<T*> res;
    res.reserve(vars.size());
    std::transform(vars.begin(), vars.end(), std::back_inserter(res),
                   [&](Variable* var) -> T* {
                     return var == nullptr ? nullptr : var->GetMutable<T>();
                   });
    return res;
  }

  template <typename T>
  const std::vector<const T*> LegacyMultiInput(const std::string& name) const {
322 323 324 325
    auto names = op_.Inputs(name);
    std::vector<const T*> res;
    res.reserve(names.size());
    std::transform(names.begin(), names.end(), std::back_inserter(res),
C
chengduo 已提交
326
                   [&](const std::string& sub_name) -> const T* {
327
                     auto var = scope_.FindVar(sub_name);
328
                     return var == nullptr ? nullptr : &var->Get<T>();
329 330 331 332 333
                   });
    return res;
  }

  template <typename T>
X
Xin Pan 已提交
334
  std::vector<T*> LegacyMultiOutput(const std::string& name) const {
335
    auto names = op_.Outputs(name);
336
    std::vector<T*> res;
337 338
    res.reserve(names.size());
    std::transform(names.begin(), names.end(), std::back_inserter(res),
C
chengduo 已提交
339
                   [&](const std::string& sub_name) -> T* {
340
                     auto var = scope_.FindVar(sub_name);
341
                     return var == nullptr ? nullptr : var->GetMutable<T>();
342 343 344 345
                   });
    return res;
  }

346
  platform::Place GetPlace() const { return device_context_.GetPlace(); }
Q
qijun 已提交
347

Q
QI JUN 已提交
348 349 350 351 352
  template <typename DeviceContextType>
  const DeviceContextType& device_context() const {
    return *reinterpret_cast<const DeviceContextType*>(&device_context_);
  }

353
  const platform::DeviceContext& device_context() const {
Q
qijun 已提交
354
    return device_context_;
Q
qijun 已提交
355
  }
Q
qijun 已提交
356

Q
QI JUN 已提交
357 358 359 360 361 362 363 364
#ifdef PADDLE_WITH_CUDA
  const inline platform::CUDADeviceContext& cuda_device_context() const {
    PADDLE_ENFORCE(platform::is_gpu_place(device_context_.GetPlace()));
    return *reinterpret_cast<const platform::CUDADeviceContext*>(
        &device_context_);
  }
#endif

D
dzhwinter 已提交
365
  //! Get actual name vector for this input.
D
Dong Zhihong 已提交
366 367 368
  const std::vector<std::string>& Inputs(const std::string& name) const {
    return op_.Inputs(name);
  }
D
Dong Zhihong 已提交
369

D
dzhwinter 已提交
370
  //! Get actual name vector for this output.
D
Dong Zhihong 已提交
371 372 373 374
  const std::vector<std::string>& Outputs(const std::string& name) const {
    return op_.Outputs(name);
  }

375
 private:
376 377
  const OperatorBase& op_;
  const Scope& scope_;
378
  const platform::DeviceContext& device_context_;
X
Xin Pan 已提交
379
  const RuntimeContext& ctx_;
Q
Qiao Longfei 已提交
380 381
};

382 383 384
template <>
const Tensor* ExecutionContext::Input<Tensor>(const std::string& name) const;

X
Xin Pan 已提交
385
template <>
X
clean  
Xin Pan 已提交
386
const Tensor* ExecutionContext::LegacyInput<Tensor>(
X
Xin Pan 已提交
387 388
    const std::string& name) const;

389 390 391 392
template <>
const std::vector<const Tensor*> ExecutionContext::MultiInput<Tensor>(
    const std::string& name) const;

X
Xin Pan 已提交
393 394 395 396
template <>
const std::vector<const Tensor*> ExecutionContext::LegacyMultiInput<Tensor>(
    const std::string& name) const;

397 398 399
template <>
Tensor* ExecutionContext::Output<Tensor>(const std::string& name) const;

X
Xin Pan 已提交
400
template <>
X
clean  
Xin Pan 已提交
401
Tensor* ExecutionContext::LegacyOutput<Tensor>(const std::string& name) const;
X
Xin Pan 已提交
402

403 404 405 406
template <>
std::vector<Tensor*> ExecutionContext::MultiOutput<Tensor>(
    const std::string& name) const;

Y
Yu Yang 已提交
407
class OpKernelBase {
Q
qijun 已提交
408
 public:
Q
qijun 已提交
409
  /**
410
   * ExecutionContext is the only parameter of Kernel Run function.
Q
qijun 已提交
411 412
   * Run will get input/output variables, state such as momentum and
   * device resource such as CUDA stream, cublas handle, etc. from
413
   * ExecutionContext. User should construct it before run the Operator.
Q
qijun 已提交
414 415
   */

416
  virtual void Compute(const ExecutionContext& context) const = 0;
Y
Yu Yang 已提交
417

Y
Yu Yang 已提交
418 419 420 421 422 423 424
  virtual ~OpKernelBase() = default;
};

template <typename T>
class OpKernel : public OpKernelBase {
 public:
  using ELEMENT_TYPE = T;
Y
Yu Yang 已提交
425 426
};

Y
Yu Yang 已提交
427 428
class OperatorWithKernel : public OperatorBase {
 public:
Y
yuyang18 已提交
429
  using OpKernelFunc = std::function<void(const ExecutionContext&)>;
Y
Yu Yang 已提交
430
  using OpKernelMap =
Y
yuyang18 已提交
431
      std::unordered_map<OpKernelType, OpKernelFunc, OpKernelType::Hash>;
Q
Qiao Longfei 已提交
432

Y
Yu Yang 已提交
433 434
  OperatorWithKernel(const std::string& type, const VariableNameMap& inputs,
                     const VariableNameMap& outputs, const AttributeMap& attrs)
Y
Yu Yang 已提交
435 436
      : OperatorBase(type, inputs, outputs, attrs) {}

Y
Yu Yang 已提交
437 438 439 440
  static std::unordered_map<std::string /* op_type */, OpKernelMap>&
  AllOpKernels() {
    static std::unordered_map<std::string, OpKernelMap> g_all_op_kernels;
    return g_all_op_kernels;
Y
Yu Yang 已提交
441
  }
Y
Yan Chunwei 已提交
442

443
  bool SupportGPU() const override {
Y
Yu Yang 已提交
444 445 446 447 448
    auto& op_kernels = OperatorWithKernel::AllOpKernels().at(type_);
    return std::any_of(op_kernels.begin(), op_kernels.end(),
                       [](OpKernelMap::const_reference kern_pair) {
                         return platform::is_gpu_place(kern_pair.first.place_);
                       });
449 450
  }

451 452 453
  virtual void InferShape(InferShapeContext* ctx) const {
    OpInfoMap::Instance().Get(Type()).infer_shape_(ctx);
  }
Y
Yu Yang 已提交
454

X
Xin Pan 已提交
455 456
  void RuntimeInferShape(const Scope& scope, const platform::Place& place,
                         const RuntimeContext& ctx) const override;
B
baojun-nervana 已提交
457

Q
qiaolongfei 已提交
458
 protected:
459 460 461 462
  virtual OpKernelType GetExpectedKernelType(const ExecutionContext& ctx) const;
  virtual OpKernelType GetKernelTypeForVar(
      const std::string& var_name, const Tensor& tensor,
      const OpKernelType& expected_kernel_type) const;
Y
Yu Yang 已提交
463 464

 private:
465
  // indicate kernel DataType by input data. By default all input data must be
Y
Yu Yang 已提交
466
  // same.
467
  proto::VarType::Type IndicateDataType(const ExecutionContext& ctx) const;
468
  void RunImpl(const Scope& scope, const platform::Place& place) const final;
X
Xin Pan 已提交
469 470
  void RunImpl(const RuntimeContext& ctx,
               const platform::Place& place) const final;
Y
yuyang18 已提交
471 472 473 474 475 476 477

  /**
   * Transfer data from scope to a transfered scope. If there is no data need to
   * be tranfered, it returns nullptr.
   *
   * * transfered_inplace_vars is a output vector.
   */
X
Xin Pan 已提交
478 479 480 481
  Scope* PrepareData(const Scope& scope,
                     const OpKernelType& expected_kernel_key,
                     std::vector<std::string>* transfered_inplace_vars,
                     RuntimeContext* ctx) const;
Y
yuyang18 已提交
482 483 484 485

  void TransferInplaceVarsBack(const Scope& scope,
                               const std::vector<std::string>& inplace_vars,
                               const Scope& exec_scope) const;
Q
Qiao Longfei 已提交
486 487
};

Y
Yu Yang 已提交
488 489
extern bool OpSupportGPU(const std::string& op_type);

Q
Qiao Longfei 已提交
490 491
}  // namespace framework
}  // namespace paddle