maxout_op.cc 4.1 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
W
wanghaox 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 *     Unless required by applicable law or agreed to in writing, software
 *     distributed under the License is distributed on an "AS IS" BASIS,
 *     WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *     See the License for the specific language governing permissions and
 *     limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/maxout_op.h"
16 17
#include <vector>

W
wanghaox 已提交
18 19 20 21 22 23 24
namespace paddle {
namespace operators {

using framework::Tensor;

class MaxOutOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
25
  MaxOutOpMaker(OpProto* proto, OpAttrChecker* op_checker)
W
wanghaox 已提交
26
      : OpProtoAndCheckerMaker(proto, op_checker) {
27 28
    AddInput(
        "X",
W
wanghaox 已提交
29
        "(Tensor) The input tensor of maxout operator. "
W
wanghaox 已提交
30 31 32
        "The format of input tensor is NCHW. Where N is batch size, C is the "
        "number of channels, H and W is the height and width of feature.");
    AddOutput("Out",
33 34 35 36 37
              "(Tensor) The output tensor of maxout operator."
              "The format of output tensor is also NCHW."
              "Where N is batch size, C is "
              "the number of channels, H and W is the height and "
              "width of feature.");
W
wanghaox 已提交
38 39
    AddAttr<int>(
        "groups",
W
wanghaox 已提交
40 41 42
        R"DOC("Specifies how many groups the input tensor will be split"
        "in the channel dimension. And the number of output channel is "
        "the number of channels divided by groups.."
W
wanghaox 已提交
43 44
        )DOC");
    AddComment(R"DOC(
K
kexinzhao 已提交
45
MaxOut Operator.
W
wanghaox 已提交
46

K
kexinzhao 已提交
47 48 49
Assumed the input shape is (N, Ci, H, W).
The output shape is (N, Co, H, W).
Then $Co = Ci / groups$ and the operator formula is as follows:
W
wanghaox 已提交
50

K
kexinzhao 已提交
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
$$
y_{si+j} = \max_k x_{gsi + sk + j} \\
g = groups \\
s = \frac{input.size}{num\_channels} \\
0 \le i < \frac{num\_channels}{groups} \\
0 \le j < s \\
0 \le k < groups
$$

Please refer to Paper:
  - Maxout Networks: http://www.jmlr.org/proceedings/papers/v28/goodfellow13.pdf
  - Multi-digit Number Recognition from Street View \
    Imagery using Deep Convolutional Neural Networks: \
    https://arxiv.org/pdf/1312.6082v4.pdf

)DOC");
W
wanghaox 已提交
67 68 69 70 71 72 73
  }
};

class MaxOutOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext* ctx) const override {
74 75
    PADDLE_ENFORCE(ctx->HasInput("X"),
                   "Input(X) of MaxoutOp"
W
wanghaox 已提交
76 77
                   "should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
W
wanghaox 已提交
78
                   "Output(Out) of MaxoutOp should not be null.");
W
wanghaox 已提交
79 80 81
    auto in_x_dims = ctx->GetInputDim("X");
    int groups = ctx->Attrs().Get<int>("groups");
    // check groups > 1
82
    PADDLE_ENFORCE_GT(groups, 1, "groups should be larger than 1 in maxoutop");
W
wanghaox 已提交
83
    std::vector<int64_t> output_shape({in_x_dims[0], in_x_dims[1] / groups});
W
wanghaox 已提交
84 85 86 87 88 89 90 91 92 93 94 95
    output_shape.push_back(in_x_dims[2]);
    output_shape.push_back(in_x_dims[3]);
    ctx->SetOutputDim("Out", framework::make_ddim(output_shape));
  }
};

class MaxOutOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) must not be null.");
    PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("X")),
96
                   "Input(X@GRAD) should not be null.");
W
wanghaox 已提交
97 98 99
    ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
  }
};
100 101
}  // namespace operators
}  // namespace paddle
W
wanghaox 已提交
102 103

namespace ops = paddle::operators;
Y
Yang Yang 已提交
104 105 106
REGISTER_OPERATOR(maxout, ops::MaxOutOp, ops::MaxOutOpMaker,
                  paddle::framework::DefaultGradOpDescMaker<true>)
REGISTER_OPERATOR(maxout_grad, ops::MaxOutOpGrad)
107
REGISTER_OP_CPU_KERNEL(
Q
QI JUN 已提交
108 109 110 111
    maxout, ops::MaxOutKernel<paddle::platform::CPUDeviceContext, float>);
REGISTER_OP_CPU_KERNEL(
    maxout_grad,
    ops::MaxOutGradKernel<paddle::platform::CPUDeviceContext, float>);