correlation_op.cu 16.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15 16 17
#ifndef PADDLE_WITH_HIP
// HIP not supported yet

18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
#include <algorithm>
#include <string>
#include "paddle/fluid/framework/op_registry.h"

namespace paddle {
namespace operators {

#define THREADS_PER_BLOCK 32
#define FULL_MASK 0xffffffff

using framework::Tensor;

template <typename T>
__forceinline__ __device__ T warpReduceSum(T val) {
  for (int offset = 16; offset > 0; offset /= 2) {
    val += __shfl_down_sync(FULL_MASK, val, offset);
  }
  return val;
}

template <typename T>
__forceinline__ __device__ T blockReduceSum(T val) {
  static __shared__ T shared[32];
  int lane = threadIdx.x % warpSize;
  int wid = threadIdx.x / warpSize;

  val = warpReduceSum(val);
45
  __syncthreads();
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
  if (lane == 0) shared[wid] = val;

  __syncthreads();
  val = (threadIdx.x < blockDim.x / warpSize) ? shared[lane] : 0;

  if (wid == 0) val = warpReduceSum(val);

  return val;
}

template <typename T>
__global__ void set_zero(T *x, int num) {
  for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < num;
       i += blockDim.x * gridDim.x)
    x[i] = static_cast<T>(0);
}

template <typename T>
__global__ void channel_first(const T *input, T *rinput, const int channel,
                              const int height, const int width,
                              const int pad_size) {
  int n = blockIdx.x;
  int h = blockIdx.y;
  int w = blockIdx.z;

  int ch_off = threadIdx.x;
  T value;
  int dimchw = channel * height * width;
  int dimhw = height * width;

  int p_dimw = (width + 2 * pad_size);
  int p_dimh = (height + 2 * pad_size);
  int p_dimchw = channel * p_dimw * p_dimh;
  int p_dimcw = channel * p_dimw;

  for (int c = ch_off; c < channel; c += THREADS_PER_BLOCK) {
    value = input[n * dimchw + c * dimhw + h * width + w];
    rinput[n * p_dimchw + (h + pad_size) * p_dimcw + (w + pad_size) * channel +
           c] = value;
  }
}

template <typename T>
__global__ void correlation_forward(
    T *output, const int output_channel, const int output_height,
    const int output_width, const T *rinput1, const int input_channel,
    const int input_height, const int input_width, const T *rinput2,
    const int pad_size, const int kernel_size, const int max_displacement,
    const int stride1, const int stride2) {
  int p_input_width = input_width + 2 * pad_size;
  int p_input_height = input_height + 2 * pad_size;

  int kernel_rad = (kernel_size - 1) / 2;
  int displacement_rad = max_displacement / stride2;

  int displacement_size = 2 * displacement_rad + 1;

  int n = blockIdx.x;
  int h1 = blockIdx.y * stride1 + max_displacement;
  int w1 = blockIdx.z * stride1 + max_displacement;
  int c = threadIdx.x;

  int p_dimchw = p_input_height * p_input_width * input_channel;
  int p_dimcw = p_input_width * input_channel;
  int p_dimc = input_channel;

  int t_dimchw = output_channel * output_height * output_width;
  int t_dimhw = output_height * output_width;
  int t_dimw = output_width;

  int nelems = kernel_size * kernel_size * p_dimc;

  for (int tj = -displacement_rad; tj <= displacement_rad; ++tj) {
    for (int ti = -displacement_rad; ti <= displacement_rad; ++ti) {
      int w2 = w1 + ti * stride2;
      int h2 = h1 + tj * stride2;

      T acc0 = 0;
      for (int j = -kernel_rad; j <= kernel_rad; ++j) {
        for (int i = -kernel_rad; i <= kernel_rad; ++i) {
          for (int ch = c; ch < p_dimc; ch += blockDim.x) {
            int index1 =
                n * p_dimchw + (h1 + j) * p_dimcw + (w1 + i) * p_dimc + ch;
            int index2 =
                n * p_dimchw + (h2 + j) * p_dimcw + (w2 + i) * p_dimc + ch;
            acc0 += static_cast<T>(rinput1[index1] * rinput2[index2]);
          }
        }
      }
      if (blockDim.x == warpSize) {
        __syncwarp();
        acc0 = warpReduceSum(acc0);
      } else {
        __syncthreads();
        acc0 = blockReduceSum(acc0);
      }

      if (threadIdx.x == 0) {
        int tc = (tj + displacement_rad) * displacement_size +
                 (ti + displacement_rad);
        const int t_index =
            n * t_dimchw + tc * t_dimhw + blockIdx.y * t_dimw + blockIdx.z;
        output[t_index] = static_cast<T>(acc0 / nelems);
      }
    }
  }
}

// class CorrelationKernel<platform::CUDADeviceContext, T>
template <typename T>
class CorrelationCUDAKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    PADDLE_ENFORCE_EQ(platform::is_gpu_place(ctx.GetPlace()), true,
                      platform::errors::InvalidArgument(
                          "Correlation only supports GPU now."));

    auto *input1 = ctx.Input<Tensor>("Input1");
    auto *input2 = ctx.Input<Tensor>("Input2");
    int pad_size = ctx.Attr<int>("pad_size");
    int kernel_size = ctx.Attr<int>("kernel_size");
    int stride1 = ctx.Attr<int>("stride1");
    int stride2 = ctx.Attr<int>("stride2");
    int max_displacement = ctx.Attr<int>("max_displacement");
    int corr_type_multiply = ctx.Attr<int>("corr_type_multiply");

    auto *output = ctx.Output<Tensor>("Output");
    output->mutable_data<T>(ctx.GetPlace());
    auto &dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();

    // base on input1, NCHW
    auto in_dims = input1->dims();
    int N = in_dims[0];
    int C = in_dims[1];
    int H = in_dims[2];
    int W = in_dims[3];

    int padded_input_height = H + 2 * pad_size;
    int padded_input_width = W + 2 * pad_size;

    Tensor rinput1 = ctx.AllocateTmpTensor<T, platform::CUDADeviceContext>(
        {N, padded_input_height, padded_input_width, C}, dev_ctx);
    rinput1.mutable_data<T>(ctx.GetPlace());

    Tensor rinput2 = ctx.AllocateTmpTensor<T, platform::CUDADeviceContext>(
        {N, padded_input_height, padded_input_width, C}, dev_ctx);
    rinput2.mutable_data<T>(ctx.GetPlace());

    set_zero<<<(rinput1.numel() + 512 - 1) / 512, 512, 0, dev_ctx.stream()>>>(
        rinput1.data<T>(), rinput1.numel());
    set_zero<<<(rinput2.numel() + 512 - 1) / 512, 512, 0, dev_ctx.stream()>>>(
        rinput2.data<T>(), rinput2.numel());
    set_zero<<<(output->numel() + 512 - 1) / 512, 512, 0, dev_ctx.stream()>>>(
        output->data<T>(), output->numel());

    auto out_dims = output->dims();
    int OC = out_dims[1];
    int OH = out_dims[2];
    int OW = out_dims[3];

    dim3 blocks_grid(N, H, W);
    dim3 threads_block(THREADS_PER_BLOCK);

    channel_first<T><<<blocks_grid, threads_block, 0, dev_ctx.stream()>>>(
        input1->data<T>(), rinput1.data<T>(), C, H, W, pad_size);
    channel_first<T><<<blocks_grid, threads_block, 0, dev_ctx.stream()>>>(
        input2->data<T>(), rinput2.data<T>(), C, H, W, pad_size);

    dim3 threadsPerBlock(THREADS_PER_BLOCK);
    dim3 totalBlocksCorr(N, OH, OW);

    correlation_forward<
        T><<<totalBlocksCorr, threadsPerBlock, 0, dev_ctx.stream()>>>(
        output->data<T>(), OC, OH, OW, rinput1.data<T>(), C, H, W,
        rinput2.data<T>(), pad_size, kernel_size, max_displacement, stride1,
        stride2);
  }
};

template <typename T>
__global__ void correlation_backward_input1(
    int item, T *grad_input1, const int input_channel, const int input_height,
    const int input_width, const T *grad_output, const int output_channel,
    const int output_height, const int output_width, const T *rinput2,
    const int pad_size, const int kernel_size, const int max_displacement,
    const int stride1, const int stride2) {
  int n = item;
  int h = blockIdx.x * stride1 + pad_size;
  int w = blockIdx.y * stride1 + pad_size;
  int c = blockIdx.z;
  int tch_off = threadIdx.x;

  int kernel_rad = (kernel_size - 1) / 2;
  int displacement_rad = max_displacement / stride2;
  int displacement_size = 2 * displacement_rad + 1;

  int xmin = (w - kernel_rad - max_displacement) / stride1;
  int ymin = (h - kernel_rad - max_displacement) / stride1;

  int xmax = (w + kernel_rad - max_displacement) / stride1;
  int ymax = (h + kernel_rad - max_displacement) / stride1;

  if (xmax < 0 || ymax < 0 || xmin >= output_width || ymin >= output_height) {
    return;
  }

  if (xmin > xmax || ymin > ymax) {
    return;
  }

  xmin = max(0, xmin);
  xmax = min(output_width - 1, xmax);

  ymin = max(0, ymin);
  ymax = min(output_height - 1, ymax);

  int p_input_width = input_width + 2 * pad_size;
  int p_input_height = input_height + 2 * pad_size;
  int p_dimchw = input_channel * p_input_height * p_input_width;
  int p_dimcw = input_channel * p_input_width;
  int p_dimc = input_channel;

  int t_dimchw = output_channel * output_height * output_width;
  int t_dimhw = output_height * output_width;
  int t_dimw = output_width;

  int o_dimchw = input_channel * input_height * input_width;
  int o_dimhw = input_height * input_width;
  int o_dimw = input_width;

  int nelems = kernel_size * kernel_size * input_channel;

  __shared__ T prod_sum[THREADS_PER_BLOCK];
  prod_sum[tch_off] = 0;

  for (int tc = tch_off; tc < output_channel; tc += THREADS_PER_BLOCK) {
    int i2 = (tc % displacement_size - displacement_rad) * stride2;
    int j2 = (tc / displacement_size - displacement_rad) * stride2;

    int index2 = n * p_dimchw + (h + j2) * p_dimcw + (w + i2) * p_dimc + c;

    T val2 = rinput2[index2];
    for (int j = ymin; j <= ymax; ++j) {
      for (int i = xmin; i <= xmax; ++i) {
        int t_index = n * t_dimchw + tc * t_dimhw + j * t_dimw + i;
        prod_sum[tch_off] += grad_output[t_index] * val2;
      }
    }
  }

  __syncthreads();

  if (tch_off == 0) {
    T reduce_sum = 0;
    for (int index = 0; index < THREADS_PER_BLOCK; index++) {
      reduce_sum += prod_sum[index];
    }
    const int index1 =
        n * o_dimchw + c * o_dimhw + (h - pad_size) * o_dimw + (w - pad_size);
    grad_input1[index1] = static_cast<T>(reduce_sum / nelems);
  }
}

template <typename T>
__global__ void correlation_backward_input2(
    int item, T *grad_input2, const int input_channel, const int input_height,
    const int input_width, const T *grad_output, const int output_channel,
    const int output_height, const int output_width, const T *rinput1,
    const int pad_size, const int kernel_size, const int max_displacement,
    const int stride1, const int stride2) {
  int n = item;
  int h = blockIdx.x * stride1 + pad_size;
  int w = blockIdx.y * stride1 + pad_size;
  int c = blockIdx.z;

  int tch_off = threadIdx.x;

  int kernel_rad = (kernel_size - 1) / 2;
  int displacement_rad = max_displacement / stride2;
  int displacement_size = 2 * displacement_rad + 1;

  int p_input_width = input_width + 2 * pad_size;
  int p_input_height = input_height + 2 * pad_size;
  int p_dimchw = input_channel * p_input_height * p_input_width;
  int p_dimcw = input_channel * p_input_width;
  int p_dimc = input_channel;

  int t_dimchw = output_channel * output_height * output_width;
  int t_dimhw = output_height * output_width;
  int t_dimw = output_width;

  int o_dimchw = input_channel * input_height * input_width;
  int o_dimhw = input_height * input_width;
  int o_dimw = input_width;

  int nelems = kernel_size * kernel_size * input_channel;

  __shared__ T prod_sum[THREADS_PER_BLOCK];
  prod_sum[tch_off] = 0;

  for (int tc = tch_off; tc < output_channel; tc += THREADS_PER_BLOCK) {
    int i2 = (tc % displacement_size - displacement_rad) * stride2;
    int j2 = (tc / displacement_size - displacement_rad) * stride2;

    int xmin = (w - kernel_rad - max_displacement - i2) / stride1;
    int ymin = (h - kernel_rad - max_displacement - j2) / stride1;

    int xmax = (w + kernel_rad - max_displacement - i2) / stride1;
    int ymax = (h + kernel_rad - max_displacement - j2) / stride1;

    if (xmax < 0 || ymax < 0 || xmin >= output_width || ymin >= output_height) {
      continue;
    }

    if (xmin > xmax || ymin > ymax) {
      continue;
    }

    xmin = max(0, xmin);
    xmax = min(output_width - 1, xmax);

    ymin = max(0, ymin);
    ymax = min(output_height - 1, ymax);

    int index1 = n * p_dimchw + (h - j2) * p_dimcw + (w - i2) * p_dimc + c;
    T val1 = rinput1[index1];
    for (int j = ymin; j <= ymax; ++j) {
      for (int i = xmin; i <= xmax; ++i) {
        int t_index = n * t_dimchw + tc * t_dimhw + j * t_dimw + i;
        prod_sum[tch_off] += grad_output[t_index] * val1;
      }
    }
  }

  __syncthreads();

  if (tch_off == 0) {
    T reduce_sum = 0;
    for (int index = 0; index < THREADS_PER_BLOCK; index++) {
      reduce_sum += prod_sum[index];
    }
    const int index2 =
        n * o_dimchw + c * o_dimhw + (h - pad_size) * o_dimw + (w - pad_size);
    grad_input2[index2] = static_cast<T>(reduce_sum / nelems);
  }
}

template <typename T>
class CorrelationCUDAGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    PADDLE_ENFORCE_EQ(platform::is_gpu_place(ctx.GetPlace()), true,
                      platform::errors::InvalidArgument(
                          "Correlation only supports GPU now."));
    const auto *input1 = ctx.Input<Tensor>("Input1");
    const auto *input2 = ctx.Input<Tensor>("Input2");
    const auto *grad_output =
        ctx.Input<Tensor>(framework::GradVarName("Output"));
    const int pad_size = ctx.Attr<int>("pad_size");
    const int kernel_size = ctx.Attr<int>("kernel_size");
    const int stride1 = ctx.Attr<int>("stride1");
    const int stride2 = ctx.Attr<int>("stride2");
    const int max_displacement = ctx.Attr<int>("max_displacement");
    const int corr_type_multiply = ctx.Attr<int>("corr_type_multiply");

    auto *grad_input1 = ctx.Output<Tensor>(framework::GradVarName("Input1"));
    grad_input1->mutable_data<T>(ctx.GetPlace());
    auto *grad_input2 = ctx.Output<Tensor>(framework::GradVarName("Input2"));
    grad_input2->mutable_data<T>(ctx.GetPlace());
    auto &dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();

    auto in_dims = input1->dims();
    int N = in_dims[0];
    int C = in_dims[1];
    int H = in_dims[2];
    int W = in_dims[3];

    int padded_input_height = H + 2 * pad_size;
    int padded_input_width = W + 2 * pad_size;

    Tensor rinput1 = ctx.AllocateTmpTensor<T, platform::CUDADeviceContext>(
        {N, padded_input_height, padded_input_width, C}, dev_ctx);
    rinput1.mutable_data<T>(ctx.GetPlace());

    Tensor rinput2 = ctx.AllocateTmpTensor<T, platform::CUDADeviceContext>(
        {N, padded_input_height, padded_input_width, C}, dev_ctx);
    rinput2.mutable_data<T>(ctx.GetPlace());

    set_zero<<<(rinput1.numel() + 512 - 1) / 512, 512, 0, dev_ctx.stream()>>>(
        rinput1.data<T>(), rinput1.numel());
    set_zero<<<(rinput2.numel() + 512 - 1) / 512, 512, 0, dev_ctx.stream()>>>(
        rinput2.data<T>(), rinput2.numel());
    set_zero<<<(grad_input1->numel() + 512 - 1) / 512, 512, 0,
               dev_ctx.stream()>>>(grad_input1->data<T>(),
                                   grad_input1->numel());
    set_zero<<<(grad_input2->numel() + 512 - 1) / 512, 512, 0,
               dev_ctx.stream()>>>(grad_input2->data<T>(),
                                   grad_input2->numel());

    auto grad_out_dims = grad_output->dims();
    int GOC = grad_out_dims[1];
    int GOH = grad_out_dims[2];
    int GOW = grad_out_dims[3];

    dim3 blocks_grid(N, H, W);
    dim3 threads_block(THREADS_PER_BLOCK);

    channel_first<T><<<blocks_grid, threads_block, 0, dev_ctx.stream()>>>(
        input1->data<T>(), rinput1.data<T>(), C, H, W, pad_size);
    channel_first<T><<<blocks_grid, threads_block, 0, dev_ctx.stream()>>>(
        input2->data<T>(), rinput2.data<T>(), C, H, W, pad_size);

    dim3 threadsPerBlock(THREADS_PER_BLOCK);
    dim3 totalBlocksCorr(H, W, C);

    for (int n = 0; n < N; n++) {
      correlation_backward_input1<
          T><<<totalBlocksCorr, threadsPerBlock, 0, dev_ctx.stream()>>>(
          n, grad_input1->data<T>(), C, H, W, grad_output->data<T>(), GOC, GOH,
          GOW, rinput2.data<T>(), pad_size, kernel_size, max_displacement,
          stride1, stride2);
    }

    for (int n = 0; n < N; n++) {
      correlation_backward_input2<
          T><<<totalBlocksCorr, threadsPerBlock, 0, dev_ctx.stream()>>>(
          n, grad_input2->data<T>(), C, H, W, grad_output->data<T>(), GOC, GOH,
          GOW, rinput1.data<T>(), pad_size, kernel_size, max_displacement,
          stride1, stride2);
    }
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP_CUDA_KERNEL(correlation, ops::CorrelationCUDAKernel<float>,
                        ops::CorrelationCUDAKernel<double>);
REGISTER_OP_CUDA_KERNEL(correlation_grad, ops::CorrelationCUDAGradKernel<float>,
                        ops::CorrelationCUDAGradKernel<double>);
487 488

#endif  // not PADDLE_WITH_HIP