test_layer.cc 9.2 KB
Newer Older
J
Jiabin Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

//
// Created by Jiabin on 2019-08-16.
//

#include <paddle/fluid/framework/op_registry.h>
#include <memory>
#include <string>
#include <vector>
#include "gtest/gtest.h"
#include "paddle/fluid/imperative/layer.h"

namespace imperative = paddle::imperative;
namespace platform = paddle::platform;
namespace framework = paddle::framework;

namespace paddle {
namespace imperative {

using vb_vector = std::vector<std::shared_ptr<imperative::VarBase>>;

using var_pair = std::pair<std::string, vb_vector>;

TEST(test_layer, test_runtime_context) {
  std::shared_ptr<imperative::VarBase> vin(
      new imperative::VarBase(false, "vin"));
  std::shared_ptr<imperative::VarBase> vout(
      new imperative::VarBase(false, "vout"));
  var_pair in_pair = var_pair("X", vb_vector(1, vin));
  var_pair out_pair = var_pair("Out", vb_vector(1, vout));
  imperative::NameVarBaseMap ins = {in_pair};
  imperative::NameVarBaseMap outs = {out_pair};
  framework::AttributeMap attrs;
  auto* ctx = new imperative::RuntimeInferVarTypeContext(ins, &outs, attrs);
  ASSERT_TRUE(ctx->HasVar("vin"));
  ASSERT_TRUE(ctx->HasInput("X"));
  ASSERT_TRUE(ctx->HasOutput("Out"));

  ASSERT_ANY_THROW(ctx->GetDataTypes("vin"));
  std::vector<framework::proto::VarType::Type> NullType;
  ASSERT_ANY_THROW(ctx->SetDataTypes("vin", NullType));
  ASSERT_ANY_THROW(ctx->GetShape("vin"));
  ASSERT_ANY_THROW(ctx->GetLoDLevel("vin"));
  ASSERT_ANY_THROW(ctx->SetLoDLevel("vin", 2));
}

std::string LayerDebugString(const std::string& op_type,
                             const NameVarBaseMap& ins,
                             const NameVarBaseMap& outs);

64 65
TEST(test_layer, test_debug_string) {
  platform::CPUPlace place;
J
Jiabin Yang 已提交
66 67 68
  std::shared_ptr<imperative::VarBase> vin(
      new imperative::VarBase(false, "vin"));
  var_pair in_pair = var_pair("X", vb_vector(1, vin));
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119

  auto test_func = [&](std::shared_ptr<imperative::VarBase>& vout) {
    var_pair out_pair = var_pair("Out", vb_vector(1, vout));
    imperative::NameVarBaseMap ins = {in_pair};
    imperative::NameVarBaseMap outs = {out_pair};
    return LayerDebugString("test_op", ins, outs);
  };

  // 1. test null
  std::shared_ptr<imperative::VarBase> null_out(nullptr);
  std::string res_null = test_func(null_out);
  ASSERT_TRUE(res_null.find("NULL") != std::string::npos);

  // 2. test uninit var
  std::shared_ptr<imperative::VarBase> un_init_out(
      new imperative::VarBase(false, "un_init_out"));
  std::string res_un_init = test_func(un_init_out);
  ASSERT_TRUE(res_un_init.find("NOT_INITED_VAR") != std::string::npos);

  // 3. test unresolved type
  std::shared_ptr<imperative::VarBase> ut_out(
      new imperative::VarBase(false, "ut_out"));
  ut_out->MutableVar()->GetMutable<framework::LoDTensorArray>();
  std::string res_ut = test_func(ut_out);
  ASSERT_TRUE(res_ut.find("UNRESOLVED_TYPE") != std::string::npos);

  // 4. test uninit lod tensor
  std::shared_ptr<imperative::VarBase> lod_tensor(
      new imperative::VarBase(false, "lod_tensor"));
  auto tensor_l = lod_tensor->MutableVar()->GetMutable<framework::LoDTensor>();
  std::string res_ui_lod_t = test_func(lod_tensor);
  ASSERT_TRUE(res_ui_lod_t.find("NOT_INITED") != std::string::npos);

  // 5. test init lod tensor
  tensor_l->mutable_data<float>(place);
  std::string res_lod_t = test_func(lod_tensor);
  ASSERT_TRUE(res_lod_t.find("LoDTensor") != std::string::npos);

  // 6. test uninit selected rows
  std::shared_ptr<imperative::VarBase> selected_rows(
      new imperative::VarBase(false, "selected_rows"));
  auto tensor_sr = selected_rows->MutableVar()
                       ->GetMutable<framework::SelectedRows>()
                       ->mutable_value();
  std::string res_ui_sr = test_func(selected_rows);
  ASSERT_TRUE(res_ui_sr.find("NOT_INITED") != std::string::npos);

  // 7. test init selected rows
  tensor_sr->mutable_data<float>(place);
  std::string res_sr = test_func(selected_rows);
  ASSERT_TRUE(res_sr.find("SelectedRows") != std::string::npos);
J
Jiabin Yang 已提交
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
}

TEST(test_layer, test_clear_backward_info) {
  std::shared_ptr<imperative::VarBase> vin(
      new imperative::VarBase(false, "vin"));
  std::shared_ptr<imperative::VarBase> vout(
      new imperative::VarBase(false, "vout"));
  framework::OpDesc desc;
  platform::CPUPlace place;
  var_pair x_pair = var_pair("X", vb_vector(1, vin));
  var_pair y_pair = var_pair("Y", vb_vector(1, vin));
  var_pair out_pair = var_pair("Out", vb_vector(1, vout));
  imperative::NameVarBaseMap ins = {x_pair, y_pair};
  imperative::NameVarBaseMap outs = {out_pair};
  framework::AttributeMap concat_att_map;
  concat_att_map["axis"] = 1;
  std::shared_ptr<imperative::OpBase> op(
      OpBase::Create(0, "mul", ins, outs, concat_att_map, place));
  std::shared_ptr<imperative::OpBase> preceding_op(
      OpBase::Create(0, "mul", ins, outs, concat_att_map, place));
  op->InsertGradPendingOps(preceding_op.get());
  *(op->GetMutableInsMap()) = ins;
  *(op->GetMutableOutsMap()) = outs;
143 144 145
  ASSERT_GT(op->GetInsMap().size(), 0UL);
  ASSERT_GT(op->GetOutsMap().size(), 0UL);
  ASSERT_GT(op->GradPendingOps().size(), 0UL);
J
Jiabin Yang 已提交
146 147 148

  op->ClearBackwardTrace();

149 150 151
  ASSERT_EQ(op->GetInsMap().size(), 0UL);
  ASSERT_EQ(op->GetOutsMap().size(), 0UL);
  ASSERT_EQ(op->GradPendingOps().size(), 0UL);
J
Jiabin Yang 已提交
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
}

TEST(test_layer, test_varbase_basic) {
  platform::CPUPlace place;
  std::shared_ptr<imperative::VarBase> vin(
      new imperative::VarBase(false, "vin"));
  vin->MutableVar()->GetMutable<framework::LoDTensor>()->mutable_data<float>(
      place);
  std::shared_ptr<imperative::VarBase> vout(vin->NewVarBase(place, false));
  ASSERT_EQ(vout->Name(), "Itmp0");

  std::shared_ptr<imperative::VarBase> vin_with_grad(
      new imperative::VarBase(true, "vin"));
  ASSERT_ANY_THROW(vin->MutableGradVar());
  ASSERT_NO_THROW(ASSERT_TRUE(dynamic_cast<framework::Variable*>(
                                  vin_with_grad->MutableGradVar()) != 0));
  ASSERT_TRUE(
      dynamic_cast<framework::Variable*>(vin_with_grad->MutableGradVar()) != 0);
170 171
  vin_with_grad->SetOverridedStopGradient(false);
  ASSERT_FALSE(vin_with_grad->OverridedStopGradient());
J
Jiabin Yang 已提交
172
  ASSERT_NO_FATAL_FAILURE(vin_with_grad->SetPersistable(true));
173
  ASSERT_FALSE(vin_with_grad->OverridedStopGradient());
J
Jiabin Yang 已提交
174 175 176 177 178
  ASSERT_NO_FATAL_FAILURE(vin_with_grad->SetName("new_name"));
  ASSERT_EQ(vin_with_grad->Name(), "new_name");
}
// TODO(jiabin): Add more ut here for layer

H
hong 已提交
179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
TEST(test_layer, test_dygraph_execution_context) {
  std::shared_ptr<imperative::VarBase> vin(
      new imperative::VarBase(false, "vin"));
  std::shared_ptr<imperative::VarBase> vout(
      new imperative::VarBase(false, "vout"));
  framework::OpDesc desc;
  platform::CPUPlace place;
  var_pair x_pair = var_pair("X", vb_vector(1, vin));
  var_pair y_pair = var_pair("Y", vb_vector(1, vin));
  var_pair out_pair = var_pair("Out", vb_vector(1, vout));
  imperative::NameVarBaseMap ins = {x_pair, y_pair};
  imperative::NameVarBaseMap outs = {out_pair};

  framework::AttributeMap concat_att_map;
  concat_att_map["axis"] = 1;

  auto op = framework::OpRegistry::CreateOp("mul", {}, {}, {}, false);
  paddle::platform::CPUPlace cpu_place;

  paddle::platform::DeviceContextPool& pool =
      paddle::platform::DeviceContextPool::Instance();
  auto* dev_ctx = pool.Get(cpu_place);
  paddle::framework::RuntimeContext ctx({}, {});
  framework::Scope scope;

  DygraphExecutionContext dy_exe_context(*(op.get()), scope, *dev_ctx, ctx,
                                         nullptr, ins, outs, &concat_att_map);

  ASSERT_EQ(dy_exe_context.InputSize("X"), 1u);
  ASSERT_EQ(dy_exe_context.InputName("X"), "vin");
  ASSERT_EQ(dy_exe_context.HasAttr("axis"), true);
  auto attr_map = dy_exe_context.Attrs();
  ASSERT_EQ(boost::get<int>(attr_map["axis"]), 1);
  ASSERT_EQ(dy_exe_context.OutputSize("Out"), 1u);
  ASSERT_EQ(dy_exe_context.HasOutput("Out"), true);
}

TEST(test_layer, test_dygraph_infershape_context) {
  std::shared_ptr<imperative::VarBase> vin(
      new imperative::VarBase(false, "vin"));
  std::shared_ptr<imperative::VarBase> vout(
      new imperative::VarBase(false, "vout"));
  framework::OpDesc desc;
  platform::CPUPlace place;
  var_pair x_pair = var_pair("X", vb_vector(1, vin));
  var_pair y_pair = var_pair("Y", vb_vector(1, vin));
  var_pair out_pair = var_pair("Out", vb_vector(1, vout));
  imperative::NameVarBaseMap ins = {x_pair, y_pair};
  imperative::NameVarBaseMap outs = {out_pair};

  framework::AttributeMap concat_att_map;
  concat_att_map["axis"] = 1;

  DygraphInferShapeContext infer_shape_ctx(&ins, &outs, &concat_att_map);

  bool have_x = infer_shape_ctx.HasOutputs("Out");
  ASSERT_EQ(have_x, true);
  bool have_z = infer_shape_ctx.HasOutputs("Z");
  ASSERT_EQ(have_z, false);
}

J
Jiabin Yang 已提交
240 241 242 243
}  // namespace imperative
}  // namespace paddle

USE_OP(mul);