pooling.cc 31.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/math/pooling.h"
16 17 18 19 20

namespace paddle {
namespace operators {
namespace math {

C
chengduoZH 已提交
21 22 23 24 25
/*
 * All tensors are in NCHW format.
 * Ksize, strides, paddings are two elements. These two elements represent
 * height and width, respectively.
 */
26
template <typename PoolProcess, typename T>
Q
QI JUN 已提交
27
class Pool2dFunctor<platform::CPUDeviceContext, PoolProcess, T> {
28
 public:
Q
QI JUN 已提交
29
  void operator()(const platform::CPUDeviceContext& context,
C
chengduoZH 已提交
30 31 32
                  const framework::Tensor& input, std::vector<int>& ksize,
                  std::vector<int>& strides, std::vector<int>& paddings,
                  PoolProcess pool_process, framework::Tensor* output) {
33 34 35
    const int batch_size = input.dims()[0];
    const int input_height = input.dims()[2];
    const int input_width = input.dims()[3];
C
chengduoZH 已提交
36 37 38
    const int output_channels = output->dims()[1];
    const int output_height = output->dims()[2];
    const int output_width = output->dims()[3];
39 40 41 42 43 44 45 46 47 48 49
    const int ksize_height = ksize[0];
    const int ksize_width = ksize[1];
    const int stride_height = strides[0];
    const int stride_width = strides[1];
    const int padding_height = paddings[0];
    const int padding_width = paddings[1];

    const int input_stride = input_height * input_width;
    const int output_stride = output_height * output_width;

    const T* input_data = input.data<T>();
C
chengduoZH 已提交
50
    T* output_data = output->mutable_data<T>(context.GetPlace());
51 52 53 54 55 56 57 58 59 60 61

    for (int i = 0; i < batch_size; i++) {
      for (int c = 0; c < output_channels; ++c) {
        for (int ph = 0; ph < output_height; ++ph) {
          int hstart = ph * stride_height - padding_height;
          int hend = std::min(hstart + ksize_height, input_height);
          hstart = std::max(hstart, 0);
          for (int pw = 0; pw < output_width; ++pw) {
            int wstart = pw * stride_width - padding_width;
            int wend = std::min(wstart + ksize_width, input_width);
            wstart = std::max(wstart, 0);
62 63

            T ele = pool_process.initial();
64 65
            for (int h = hstart; h < hend; ++h) {
              for (int w = wstart; w < wend; ++w) {
66
                pool_process.compute(ele, input_data[h * input_width + w]);
67 68 69
              }
            }
            int pool_size = (hend - hstart) * (wend - wstart);
70
            pool_process.finalize(ele, (static_cast<T>(pool_size)));
71 72 73 74 75 76 77 78 79 80
            output_data[ph * output_width + pw] = ele;
          }
        }
        input_data += input_stride;
        output_data += output_stride;
      }
    }
  }
};

C
chengduoZH 已提交
81 82 83 84 85
/*
* All tensors are in NCHW format.
* Ksize, strides, paddings are two elements. These two elements represent height
* and width, respectively.
*/
86
template <typename PoolProcess, class T>
Q
QI JUN 已提交
87
class Pool2dGradFunctor<platform::CPUDeviceContext, PoolProcess, T> {
88
 public:
Q
QI JUN 已提交
89
  void operator()(const platform::CPUDeviceContext& context,
C
chengduoZH 已提交
90
                  const framework::Tensor& input,
91 92 93
                  const framework::Tensor& output,
                  const framework::Tensor& output_grad, std::vector<int>& ksize,
                  std::vector<int>& strides, std::vector<int>& paddings,
C
chengduoZH 已提交
94 95
                  PoolProcess pool_grad_process,
                  framework::Tensor* input_grad) {
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
    const int batch_size = input.dims()[0];
    const int input_height = input.dims()[2];
    const int input_width = input.dims()[3];
    const int output_channels = output.dims()[1];
    const int output_height = output.dims()[2];
    const int output_width = output.dims()[3];
    const int ksize_height = ksize[0];
    const int ksize_width = ksize[1];
    const int stride_height = strides[0];
    const int stride_width = strides[1];
    const int padding_height = paddings[0];
    const int padding_width = paddings[1];
    const int input_stride = input_height * input_width;
    const int output_stride = output_height * output_width;

    const T* input_data = input.data<T>();
    const T* output_data = output.data<T>();
    const T* output_grad_data = output_grad.data<T>();
C
chengduoZH 已提交
114
    T* input_grad_data = input_grad->mutable_data<T>(context.GetPlace());
115 116 117 118 119 120 121 122 123 124 125 126

    for (int i = 0; i < batch_size; i++) {
      for (int c = 0; c < output_channels; ++c) {
        for (int ph = 0; ph < output_height; ++ph) {
          int hstart = ph * stride_height - padding_height;
          int hend = std::min(hstart + ksize_height, input_height);
          hstart = std::max(hstart, 0);
          for (int pw = 0; pw < output_width; ++pw) {
            int wstart = pw * stride_width - padding_width;
            int wend = std::min(wstart + ksize_width, input_width);
            wstart = std::max(wstart, 0);
            int pool_size = (hend - hstart) * (wend - wstart);
127
            float scale = 1.0 / pool_size;
128 129
            for (int h = hstart; h < hend; ++h) {
              for (int w = wstart; w < wend; ++w) {
130 131 132 133 134 135
                pool_grad_process.compute(
                    input_data[h * input_width + w],
                    output_data[ph * output_width + pw],
                    output_grad_data[ph * output_width + pw],
                    input_grad_data[h * input_width + w],
                    static_cast<T>(scale));
136 137 138 139 140 141 142 143 144 145 146 147 148
              }
            }
          }
        }
        input_data += input_stride;
        output_data += output_stride;
        input_grad_data += input_stride;
        output_grad_data += output_stride;
      }
    }
  }
};

C
chengduoZH 已提交
149 150 151 152 153
/*
 * All tensors are in NCHW format.
 * Ksize, strides, paddings are two elements. These two elements represent
 * height and width, respectively.
 */
154
template <class T>
Q
QI JUN 已提交
155
class MaxPool2dGradFunctor<platform::CPUDeviceContext, T> {
156
 public:
Q
QI JUN 已提交
157
  void operator()(const platform::CPUDeviceContext& context,
C
chengduoZH 已提交
158
                  const framework::Tensor& input,
159 160
                  const framework::Tensor& output,
                  const framework::Tensor& output_grad, std::vector<int>& ksize,
C
chengduoZH 已提交
161 162
                  std::vector<int>& strides, std::vector<int>& paddings,
                  framework::Tensor* input_grad) {
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
    const int batch_size = input.dims()[0];
    const int input_height = input.dims()[2];
    const int input_width = input.dims()[3];
    const int output_channels = output.dims()[1];
    const int output_height = output.dims()[2];
    const int output_width = output.dims()[3];
    const int ksize_height = ksize[0];
    const int ksize_width = ksize[1];
    const int stride_height = strides[0];
    const int stride_width = strides[1];
    const int padding_height = paddings[0];
    const int padding_width = paddings[1];
    const int input_stride = input_height * input_width;
    const int output_stride = output_height * output_width;

    const T* input_data = input.data<T>();
    const T* output_data = output.data<T>();
    const T* output_grad_data = output_grad.data<T>();
C
chengduoZH 已提交
181
    T* input_grad_data = input_grad->mutable_data<T>(context.GetPlace());
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215

    for (int i = 0; i < batch_size; i++) {
      for (int c = 0; c < output_channels; ++c) {
        for (int ph = 0; ph < output_height; ++ph) {
          int hstart = ph * stride_height - padding_height;
          int hend = std::min(hstart + ksize_height, input_height);
          hstart = std::max(hstart, 0);
          for (int pw = 0; pw < output_width; ++pw) {
            int wstart = pw * stride_width - padding_width;
            int wend = std::min(wstart + ksize_width, input_width);
            wstart = std::max(wstart, 0);

            bool stop = false;
            for (int h = hstart; h < hend && !stop; ++h) {
              for (int w = wstart; w < wend && !stop; ++w) {
                int input_idx = h * input_width + w;
                int output_idx = ph * output_width + pw;
                if (input_data[input_idx] == output_data[output_idx]) {
                  input_grad_data[input_idx] += output_grad_data[output_idx];
                  stop = true;
                }
              }
            }
          }
        }
        input_data += input_stride;
        output_data += output_stride;
        input_grad_data += input_stride;
        output_grad_data += output_stride;
      }
    }
  }
};

Q
QI JUN 已提交
216 217
template class MaxPool2dGradFunctor<platform::CPUDeviceContext, float>;
template class MaxPool2dGradFunctor<platform::CPUDeviceContext, double>;
C
chengduoZH 已提交
218

Q
QI JUN 已提交
219
template class Pool2dFunctor<platform::CPUDeviceContext,
220
                             paddle::operators::math::MaxPool<float>, float>;
Q
QI JUN 已提交
221
template class Pool2dFunctor<platform::CPUDeviceContext,
222
                             paddle::operators::math::AvgPool<float>, float>;
Q
QI JUN 已提交
223 224 225 226 227 228 229
template class Pool2dGradFunctor<platform::CPUDeviceContext,
                                 paddle::operators::math::MaxPoolGrad<float>,
                                 float>;
template class Pool2dGradFunctor<platform::CPUDeviceContext,
                                 paddle::operators::math::AvgPoolGrad<float>,
                                 float>;
template class Pool2dFunctor<platform::CPUDeviceContext,
230
                             paddle::operators::math::MaxPool<double>, double>;
Q
QI JUN 已提交
231
template class Pool2dFunctor<platform::CPUDeviceContext,
232
                             paddle::operators::math::AvgPool<double>, double>;
Q
QI JUN 已提交
233 234 235 236 237 238
template class Pool2dGradFunctor<platform::CPUDeviceContext,
                                 paddle::operators::math::MaxPoolGrad<double>,
                                 double>;
template class Pool2dGradFunctor<platform::CPUDeviceContext,
                                 paddle::operators::math::AvgPoolGrad<double>,
                                 double>;
239

C
chengduoZH 已提交
240 241 242 243 244
/*
 * All tensors are in NCDHW format.
 * Ksize, strides, paddings are three elements. These three elements represent
 * depth, height and width, respectively.
 */
245
template <typename PoolProcess, class T>
Q
QI JUN 已提交
246
class Pool3dFunctor<platform::CPUDeviceContext, PoolProcess, T> {
247
 public:
Q
QI JUN 已提交
248
  void operator()(const platform::CPUDeviceContext& context,
C
chengduoZH 已提交
249 250 251
                  const framework::Tensor& input, std::vector<int>& ksize,
                  std::vector<int>& strides, std::vector<int>& paddings,
                  PoolProcess pool_process, framework::Tensor* output) {
252 253 254 255
    const int batch_size = input.dims()[0];
    const int input_depth = input.dims()[2];
    const int input_height = input.dims()[3];
    const int input_width = input.dims()[4];
C
chengduoZH 已提交
256 257 258 259
    const int output_channels = output->dims()[1];
    const int output_depth = output->dims()[2];
    const int output_height = output->dims()[3];
    const int output_width = output->dims()[4];
260 261 262 263 264 265 266 267 268 269 270 271 272 273
    const int ksize_depth = ksize[0];
    const int ksize_height = ksize[1];
    const int ksize_width = ksize[2];
    const int stride_depth = strides[0];
    const int stride_height = strides[1];
    const int stride_width = strides[2];
    const int padding_depth = paddings[0];
    const int padding_height = paddings[1];
    const int padding_width = paddings[2];

    const int input_stride = input_depth * input_height * input_width;
    const int output_stride = output_depth * output_height * output_width;

    const T* input_data = input.data<T>();
C
chengduoZH 已提交
274
    T* output_data = output->mutable_data<T>(context.GetPlace());
275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290

    for (int i = 0; i < batch_size; i++) {
      for (int c = 0; c < output_channels; ++c) {
        for (int pd = 0; pd < output_depth; ++pd) {
          int dstart = pd * stride_depth - padding_depth;
          int dend = std::min(dstart + ksize_depth, input_depth);
          dstart = std::max(dstart, 0);
          for (int ph = 0; ph < output_height; ++ph) {
            int hstart = ph * stride_height - padding_height;
            int hend = std::min(hstart + ksize_height, input_height);
            hstart = std::max(hstart, 0);
            for (int pw = 0; pw < output_width; ++pw) {
              int wstart = pw * stride_width - padding_width;
              int wend = std::min(wstart + ksize_width, input_width);
              wstart = std::max(wstart, 0);
              int output_idx = (pd * output_height + ph) * output_width + pw;
291
              T ele = pool_process.initial();
292 293 294
              for (int d = dstart; d < dend; ++d) {
                for (int h = hstart; h < hend; ++h) {
                  for (int w = wstart; w < wend; ++w) {
295
                    pool_process.compute(
296 297 298 299 300 301 302
                        ele,
                        input_data[(d * input_height + h) * input_width + w]);
                  }
                }
              }
              int pool_size =
                  (dend - dstart) * (hend - hstart) * (wend - wstart);
303
              pool_process.finalize(ele, static_cast<T>(pool_size));
304 305 306 307 308 309 310 311 312 313 314
              output_data[output_idx] = ele;
            }
          }
        }
        input_data += input_stride;
        output_data += output_stride;
      }
    }
  }
};

C
chengduoZH 已提交
315 316 317 318 319
/*
 * All tensors are in NCDHW format.
 * Ksize, strides, paddings are three elements. These three elements represent
 * depth, height and width, respectively.
 */
320
template <typename PoolProcess, class T>
Q
QI JUN 已提交
321
class Pool3dGradFunctor<platform::CPUDeviceContext, PoolProcess, T> {
322
 public:
Q
QI JUN 已提交
323
  void operator()(const platform::CPUDeviceContext& context,
C
chengduoZH 已提交
324
                  const framework::Tensor& input,
325 326 327
                  const framework::Tensor& output,
                  const framework::Tensor& output_grad, std::vector<int>& ksize,
                  std::vector<int>& strides, std::vector<int>& paddings,
C
chengduoZH 已提交
328 329
                  PoolProcess pool_grad_process,
                  framework::Tensor* input_grad) {
330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
    const int batch_size = input.dims()[0];
    const int input_depth = input.dims()[2];
    const int input_height = input.dims()[3];
    const int input_width = input.dims()[4];
    const int output_channels = output.dims()[1];
    const int output_depth = output.dims()[2];
    const int output_height = output.dims()[3];
    const int output_width = output.dims()[4];
    const int ksize_depth = ksize[0];
    const int ksize_height = ksize[1];
    const int ksize_width = ksize[2];
    const int stride_depth = strides[0];
    const int stride_height = strides[1];
    const int stride_width = strides[2];
    const int padding_depth = paddings[0];
    const int padding_height = paddings[1];
    const int padding_width = paddings[2];
    const int input_stride = input_depth * input_height * input_width;
    const int output_stride = output_depth * output_height * output_width;

    const T* input_data = input.data<T>();
    const T* output_data = output.data<T>();
    const T* output_grad_data = output_grad.data<T>();
C
chengduoZH 已提交
353
    T* input_grad_data = input_grad->mutable_data<T>(context.GetPlace());
354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372

    for (int i = 0; i < batch_size; i++) {
      for (int c = 0; c < output_channels; ++c) {
        for (int pd = 0; pd < output_depth; ++pd) {
          int dstart = pd * stride_depth - padding_depth;
          int dend = std::min(dstart + ksize_depth, input_depth);
          dstart = std::max(dstart, 0);
          for (int ph = 0; ph < output_height; ++ph) {
            int hstart = ph * stride_height - padding_height;
            int hend = std::min(hstart + ksize_height, input_height);
            hstart = std::max(hstart, 0);

            for (int pw = 0; pw < output_width; ++pw) {
              int wstart = pw * stride_width - padding_width;
              int wend = std::min(wstart + ksize_width, input_width);
              wstart = std::max(wstart, 0);

              int pool_size =
                  (dend - dstart) * (hend - hstart) * (wend - wstart);
373
              float scale = 1.0 / pool_size;
374 375 376 377 378 379
              for (int d = dstart; d < dend; ++d) {
                for (int h = hstart; h < hend; ++h) {
                  for (int w = wstart; w < wend; ++w) {
                    int input_idx = (d * input_height + h) * input_width + w;
                    int output_idx =
                        (pd * output_height + ph) * output_width + pw;
380
                    pool_grad_process.compute(
381 382
                        input_data[input_idx], output_data[output_idx],
                        output_grad_data[output_idx],
383
                        input_grad_data[input_idx], static_cast<T>(scale));
384 385 386 387 388 389
                  }
                }
              }
            }
          }
        }
390 391 392 393
        input_data += input_stride;
        output_data += output_stride;
        input_grad_data += input_stride;
        output_grad_data += output_stride;
394 395 396 397 398
      }
    }
  }
};

C
chengduoZH 已提交
399 400 401 402 403
/*
 * All tensors are in NCDHW format.
 * Ksize, strides, paddings are three elements. These three elements represent
 * depth, height and width, respectively.
 */
404
template <class T>
Q
QI JUN 已提交
405
class MaxPool3dGradFunctor<platform::CPUDeviceContext, T> {
406
 public:
Q
QI JUN 已提交
407
  void operator()(const platform::CPUDeviceContext& context,
C
chengduoZH 已提交
408
                  const framework::Tensor& input,
409 410
                  const framework::Tensor& output,
                  const framework::Tensor& output_grad, std::vector<int>& ksize,
C
chengduoZH 已提交
411 412
                  std::vector<int>& strides, std::vector<int>& paddings,
                  framework::Tensor* input_grad) {
413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435
    const int batch_size = input.dims()[0];
    const int input_depth = input.dims()[2];
    const int input_height = input.dims()[3];
    const int input_width = input.dims()[4];
    const int output_channels = output.dims()[1];
    const int output_depth = output.dims()[2];
    const int output_height = output.dims()[3];
    const int output_width = output.dims()[4];
    const int ksize_depth = ksize[0];
    const int ksize_height = ksize[1];
    const int ksize_width = ksize[2];
    const int stride_depth = strides[0];
    const int stride_height = strides[1];
    const int stride_width = strides[2];
    const int padding_depth = paddings[0];
    const int padding_height = paddings[1];
    const int padding_width = paddings[2];
    const int input_stride = input_depth * input_height * input_width;
    const int output_stride = output_depth * output_height * output_width;

    const T* input_data = input.data<T>();
    const T* output_data = output.data<T>();
    const T* output_grad_data = output_grad.data<T>();
C
chengduoZH 已提交
436
    T* input_grad_data = input_grad->mutable_data<T>(context.GetPlace());
437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479

    for (int i = 0; i < batch_size; i++) {
      for (int c = 0; c < output_channels; ++c) {
        for (int pd = 0; pd < output_depth; ++pd) {
          int dstart = pd * stride_depth - padding_depth;
          int dend = std::min(dstart + ksize_depth, input_depth);
          dstart = std::max(dstart, 0);
          for (int ph = 0; ph < output_height; ++ph) {
            int hstart = ph * stride_height - padding_height;
            int hend = std::min(hstart + ksize_height, input_height);
            hstart = std::max(hstart, 0);
            for (int pw = 0; pw < output_width; ++pw) {
              int wstart = pw * stride_width - padding_width;
              int wend = std::min(wstart + ksize_width, input_width);
              wstart = std::max(wstart, 0);
              bool stop = false;
              for (int d = dstart; d < dend && !stop; ++d) {
                for (int h = hstart; h < hend && !stop; ++h) {
                  for (int w = wstart; w < wend && !stop; ++w) {
                    int input_idx = (d * input_height + h) * input_width + w;
                    int output_idx =
                        (pd * output_height + ph) * output_width + pw;

                    if (input_data[input_idx] == output_data[output_idx]) {
                      input_grad_data[input_idx] +=
                          output_grad_data[output_idx];
                      stop = true;
                    }
                  }
                }
              }
            }
          }
        }
        input_data += input_stride;
        output_data += output_stride;
        input_grad_data += input_stride;
        output_grad_data += output_stride;
      }
    }
  }
};

Q
QI JUN 已提交
480 481
template class MaxPool3dGradFunctor<platform::CPUDeviceContext, float>;
template class MaxPool3dGradFunctor<platform::CPUDeviceContext, double>;
C
chengduoZH 已提交
482

Q
QI JUN 已提交
483
template class Pool3dFunctor<platform::CPUDeviceContext,
484
                             paddle::operators::math::MaxPool<float>, float>;
Q
QI JUN 已提交
485
template class Pool3dFunctor<platform::CPUDeviceContext,
486
                             paddle::operators::math::AvgPool<float>, float>;
Q
QI JUN 已提交
487 488 489 490 491 492 493
template class Pool3dGradFunctor<platform::CPUDeviceContext,
                                 paddle::operators::math::MaxPoolGrad<float>,
                                 float>;
template class Pool3dGradFunctor<platform::CPUDeviceContext,
                                 paddle::operators::math::AvgPoolGrad<float>,
                                 float>;
template class Pool3dFunctor<platform::CPUDeviceContext,
494
                             paddle::operators::math::MaxPool<double>, double>;
Q
QI JUN 已提交
495
template class Pool3dFunctor<platform::CPUDeviceContext,
496
                             paddle::operators::math::AvgPool<double>, double>;
Q
QI JUN 已提交
497 498 499 500 501 502
template class Pool3dGradFunctor<platform::CPUDeviceContext,
                                 paddle::operators::math::MaxPoolGrad<double>,
                                 double>;
template class Pool3dGradFunctor<platform::CPUDeviceContext,
                                 paddle::operators::math::AvgPoolGrad<double>,
                                 double>;
C
chengduoZH 已提交
503

C
chengduoZH 已提交
504 505 506 507 508
/*
 * All tensors are in NCHW format.
 * Ksize, strides, paddings are two elements. These two elements represent
 * height and width, respectively.
 */
C
chengduoZH 已提交
509
template <typename T1, typename T2>
Q
QI JUN 已提交
510
class MaxPool2dWithIndexFunctor<platform::CPUDeviceContext, T1, T2> {
C
chengduoZH 已提交
511
 public:
Q
QI JUN 已提交
512
  void operator()(const platform::CPUDeviceContext& context,
C
chengduoZH 已提交
513 514 515
                  const framework::Tensor& input, std::vector<int>& ksize,
                  std::vector<int>& strides, std::vector<int>& paddings,
                  framework::Tensor* output, framework::Tensor* mask) {
C
chengduoZH 已提交
516 517 518
    const int batch_size = input.dims()[0];
    const int input_height = input.dims()[2];
    const int input_width = input.dims()[3];
C
chengduoZH 已提交
519 520 521
    const int output_channels = output->dims()[1];
    const int output_height = output->dims()[2];
    const int output_width = output->dims()[3];
C
chengduoZH 已提交
522 523 524 525 526 527 528 529 530
    const int ksize_height = ksize[0];
    const int ksize_width = ksize[1];
    const int stride_height = strides[0];
    const int stride_width = strides[1];
    const int padding_height = paddings[0];
    const int padding_width = paddings[1];
    const int input_stride = input_height * input_width;
    const int output_stride = output_height * output_width;

C
chengduoZH 已提交
531 532 533
    const T1* input_data = input.data<T1>();
    T1* output_data = output->mutable_data<T1>(context.GetPlace());
    T2* mask_data = mask->mutable_data<T2>(context.GetPlace());
C
chengduoZH 已提交
534 535 536 537 538 539 540 541 542 543 544 545

    for (int i = 0; i < batch_size; i++) {
      for (int c = 0; c < output_channels; ++c) {
        for (int ph = 0; ph < output_height; ++ph) {
          int hstart = ph * stride_height - padding_height;
          int hend = std::min(hstart + ksize_height, input_height);
          hstart = std::max(hstart, 0);
          for (int pw = 0; pw < output_width; ++pw) {
            int wstart = pw * stride_width - padding_width;
            int wend = std::min(wstart + ksize_width, input_width);
            wstart = std::max(wstart, 0);

C
chengduoZH 已提交
546
            T1 ele = static_cast<T1>(-FLT_MAX);
C
chengduoZH 已提交
547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568
            int index = -1;
            for (int h = hstart; h < hend; ++h) {
              for (int w = wstart; w < wend; ++w) {
                if (ele < input_data[h * input_width + w]) {
                  ele = input_data[h * input_width + w];
                  index = h * input_width + w;
                }
              }
            }
            output_data[ph * output_width + pw] = ele;
            mask_data[ph * output_width + pw] = index;
          }
        }
        // offset
        input_data += input_stride;
        output_data += output_stride;
        mask_data += output_stride;
      }
    }
  }
};

C
chengduoZH 已提交
569 570 571 572 573
/*
 * All tensors are in NCHW format.
 * Ksize, strides, paddings are two elements. These two elements represent
 * height and width, respectively.
 */
C
chengduoZH 已提交
574
template <typename T1, typename T2>
Q
QI JUN 已提交
575
class MaxPool2dWithIndexGradFunctor<platform::CPUDeviceContext, T1, T2> {
C
chengduoZH 已提交
576
 public:
Q
QI JUN 已提交
577
  void operator()(const platform::CPUDeviceContext& context,
C
chengduoZH 已提交
578 579
                  const framework::Tensor& output_grad,
                  const framework::Tensor& mask, std::vector<int>& ksize,
C
chengduoZH 已提交
580 581 582 583 584
                  std::vector<int>& strides, std::vector<int>& paddings,
                  framework::Tensor* input_grad) {
    const int batch_size = input_grad->dims()[0];
    const int input_height = input_grad->dims()[2];
    const int input_width = input_grad->dims()[3];
C
chengduoZH 已提交
585 586 587 588 589 590
    const int output_channels = output_grad.dims()[1];
    const int output_height = output_grad.dims()[2];
    const int output_width = output_grad.dims()[3];
    const int input_stride = input_height * input_width;
    const int output_stride = output_height * output_width;

C
chengduoZH 已提交
591 592 593
    const T2* mask_data = mask.data<T2>();
    const T1* output_grad_data = output_grad.data<T1>();
    T1* input_grad_data = input_grad->mutable_data<T1>(context.GetPlace());
C
chengduoZH 已提交
594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612

    for (int n = 0; n < batch_size; ++n) {
      for (int c = 0; c < output_channels; ++c) {
        for (int ph = 0; ph < output_height; ++ph) {
          for (int pw = 0; pw < output_width; ++pw) {
            const int output_idx = ph * output_width + pw;
            const int input_idx = static_cast<int>(mask_data[output_idx]);
            input_grad_data[input_idx] += output_grad_data[output_idx];
          }
        }
        // offset
        input_grad_data += input_stride;
        output_grad_data += output_stride;
        mask_data += output_stride;
      }
    }
  }
};

Q
QI JUN 已提交
613 614 615 616 617 618 619 620
template class MaxPool2dWithIndexFunctor<platform::CPUDeviceContext, float,
                                         int>;
template class MaxPool2dWithIndexGradFunctor<platform::CPUDeviceContext, float,
                                             int>;
template class MaxPool2dWithIndexFunctor<platform::CPUDeviceContext, double,
                                         int>;
template class MaxPool2dWithIndexGradFunctor<platform::CPUDeviceContext, double,
                                             int>;
C
chengduoZH 已提交
621

C
chengduoZH 已提交
622 623 624 625 626
/*
 * All tensors are in NCDHW format.
 * Ksize, strides, paddings are three elements. These three elements represent
 * depth, height and width, respectively.
 */
C
chengduoZH 已提交
627
template <typename T1, typename T2>
Q
QI JUN 已提交
628
class MaxPool3dWithIndexFunctor<platform::CPUDeviceContext, T1, T2> {
C
chengduoZH 已提交
629
 public:
Q
QI JUN 已提交
630
  void operator()(const platform::CPUDeviceContext& context,
C
chengduoZH 已提交
631 632 633
                  const framework::Tensor& input, std::vector<int>& ksize,
                  std::vector<int>& strides, std::vector<int>& paddings,
                  framework::Tensor* output, framework::Tensor* mask) {
C
chengduoZH 已提交
634 635 636 637
    const int batch_size = input.dims()[0];
    const int input_depth = input.dims()[2];
    const int input_height = input.dims()[3];
    const int input_width = input.dims()[4];
C
chengduoZH 已提交
638 639 640 641
    const int output_channels = output->dims()[1];
    const int output_depth = output->dims()[2];
    const int output_height = output->dims()[3];
    const int output_width = output->dims()[4];
C
chengduoZH 已提交
642 643 644 645 646 647 648 649 650 651 652 653
    const int ksize_depth = ksize[0];
    const int ksize_height = ksize[1];
    const int ksize_width = ksize[2];
    const int stride_depth = strides[0];
    const int stride_height = strides[1];
    const int stride_width = strides[2];
    const int padding_depth = paddings[0];
    const int padding_height = paddings[1];
    const int padding_width = paddings[2];
    const int input_stride = input_depth * input_height * input_width;
    const int output_stride = output_depth * output_height * output_width;

C
chengduoZH 已提交
654 655 656
    const T1* input_data = input.data<T1>();
    T1* output_data = output->mutable_data<T1>(context.GetPlace());
    T2* mask_data = mask->mutable_data<T2>(context.GetPlace());
C
chengduoZH 已提交
657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673

    for (int i = 0; i < batch_size; i++) {
      for (int c = 0; c < output_channels; ++c) {
        for (int pd = 0; pd < output_depth; ++pd) {
          int dstart = pd * stride_depth - padding_depth;
          int dend = std::min(dstart + ksize_depth, input_depth);
          dstart = std::max(dstart, 0);
          for (int ph = 0; ph < output_height; ++ph) {
            int hstart = ph * stride_height - padding_height;
            int hend = std::min(hstart + ksize_height, input_height);
            hstart = std::max(hstart, 0);
            for (int pw = 0; pw < output_width; ++pw) {
              int wstart = pw * stride_width - padding_width;
              int wend = std::min(wstart + ksize_width, input_width);
              wstart = std::max(wstart, 0);

              int output_idx = (pd * output_height + ph) * output_width + pw;
C
chengduoZH 已提交
674
              T1 ele = static_cast<T1>(-FLT_MAX);
C
chengduoZH 已提交
675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700
              int index = -1;
              for (int d = dstart; d < dend; ++d) {
                for (int h = hstart; h < hend; ++h) {
                  for (int w = wstart; w < wend; ++w) {
                    int input_idx = (d * input_height + h) * input_width + w;
                    if (ele < input_data[input_idx]) {
                      index = input_idx;
                      ele = input_data[input_idx];
                    }
                  }
                }
              }
              output_data[output_idx] = ele;
              mask_data[output_idx] = index;
            }
          }
        }
        // offset
        input_data += input_stride;
        output_data += output_stride;
        mask_data += output_stride;
      }
    }
  }
};

C
chengduoZH 已提交
701 702 703 704 705
/*
 * All tensors are in NCDHW format.
 * Ksize, strides, paddings are three elements. These three elements represent
 * depth, height and width, respectively.
 */
C
chengduoZH 已提交
706
template <typename T1, typename T2>
Q
QI JUN 已提交
707
class MaxPool3dWithIndexGradFunctor<platform::CPUDeviceContext, T1, T2> {
C
chengduoZH 已提交
708
 public:
Q
QI JUN 已提交
709
  void operator()(const platform::CPUDeviceContext& context,
C
chengduoZH 已提交
710 711
                  const framework::Tensor& output_grad,
                  const framework::Tensor& mask, std::vector<int>& ksize,
C
chengduoZH 已提交
712 713 714 715 716 717
                  std::vector<int>& strides, std::vector<int>& paddings,
                  framework::Tensor* input_grad) {
    const int batch_size = input_grad->dims()[0];
    const int input_depth = input_grad->dims()[2];
    const int input_height = input_grad->dims()[3];
    const int input_width = input_grad->dims()[4];
C
chengduoZH 已提交
718 719 720 721 722 723 724
    const int output_channels = output_grad.dims()[1];
    const int output_depth = output_grad.dims()[2];
    const int output_height = output_grad.dims()[3];
    const int output_width = output_grad.dims()[4];
    const int input_stride = input_depth * input_height * input_width;
    const int output_stride = output_depth * output_height * output_width;

C
chengduoZH 已提交
725 726 727
    const T2* mask_data = mask.data<T2>();
    const T1* output_grad_data = output_grad.data<T1>();
    T1* input_grad_data = input_grad->mutable_data<T1>(context.GetPlace());
C
chengduoZH 已提交
728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749

    for (int n = 0; n < batch_size; ++n) {
      for (int c = 0; c < output_channels; ++c) {
        for (int pd = 0; pd < output_depth; ++pd) {
          for (int ph = 0; ph < output_height; ++ph) {
            for (int pw = 0; pw < output_width; ++pw) {
              const int output_idx =
                  (pd * output_height + ph) * output_width + pw;
              const int input_idx = static_cast<int>(mask_data[output_idx]);
              input_grad_data[input_idx] += output_grad_data[output_idx];
            }
          }
        }
        // offset
        input_grad_data += input_stride;
        output_grad_data += output_stride;
        mask_data += output_stride;
      }
    }
  }
};

Q
QI JUN 已提交
750 751 752 753 754 755 756 757
template class MaxPool3dWithIndexFunctor<platform::CPUDeviceContext, float,
                                         int>;
template class MaxPool3dWithIndexGradFunctor<platform::CPUDeviceContext, float,
                                             int>;
template class MaxPool3dWithIndexFunctor<platform::CPUDeviceContext, double,
                                         int>;
template class MaxPool3dWithIndexGradFunctor<platform::CPUDeviceContext, double,
                                             int>;
758 759 760
}  // namespace math
}  // namespace operators
}  // namespace paddle