test_layout_autotune.py 9.3 KB
Newer Older
1
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
2
#
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
6
#
7
#     http://www.apache.org/licenses/LICENSE-2.0
8
#
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16 17
import os
import json
import tempfile
18
import unittest
19
import warnings
20
import numpy
21 22

import paddle
23 24 25 26
import paddle.nn.functional as F


class SimpleNet(paddle.nn.Layer):
27

28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
    def __init__(self, data_format="NCHW", class_num=2):
        super(SimpleNet, self).__init__()
        self.conv = paddle.nn.Conv2D(3, 8, (3, 3))
        self.bn = paddle.nn.BatchNorm(num_channels=8)
        self.relu = paddle.nn.ReLU()
        self.pool = paddle.nn.AvgPool2D(kernel_size=2, stride=2)
        self.flatten = paddle.nn.Flatten()
        self.fc = paddle.nn.Linear(392, class_num)

    def forward(self, image):
        conv_out = self.conv(image)
        bn_out = self.bn(conv_out)
        out = self.relu(bn_out)
        out = self.pool(out)
        out = self.flatten(out)
        out = self.fc(out)
        return conv_out, out


class LayoutAutoTune(unittest.TestCase):
48

49 50 51
    def setUp(self):
        self.use_autoune()

52 53
    def use_autoune(self):
        if paddle.is_compiled_with_cuda():
54 55 56 57
            paddle.incubate.autotune.set_config(
                config={"layout": {
                    "enable": True
                }})
58 59
            return paddle.fluid.core.use_layout_autotune()
        else:
60 61 62 63 64 65
            config = {"layout": {"enable": False}}
            tfile = tempfile.NamedTemporaryFile(mode="w+", delete=False)
            json.dump(config, tfile)
            tfile.close()
            paddle.incubate.autotune.set_config(tfile.name)
            os.remove(tfile.name)
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
            return paddle.fluid.core.use_layout_autotune()

    def train(self, data_format):
        model = SimpleNet(data_format="NCHW", class_num=2)
        data = paddle.rand([1, 3, 16, 16])
        if (data_format == "NHWC"):
            data = paddle.rand([1, 16, 16, 3])
        label_data = paddle.randint(0, 1, shape=[1, 1], dtype="int64")
        optimizer = paddle.optimizer.SGD(learning_rate=0.0001,
                                         parameters=model.parameters())
        scaler = paddle.amp.GradScaler()
        for i in range(2):
            with paddle.amp.auto_cast(level="O2"):
                conv_out, predict = model(data)
                loss = F.cross_entropy(predict, label=label_data)
                loss = loss.mean()

            scaled = scaler.scale(loss)
            scaled.backward()
            scaler.minimize(optimizer, scaled)
        return conv_out, predict

    def test_enable_autotune(self):
        if self.use_autoune():
            conv_out, predict = self.train(data_format="NCHW")
91 92 93 94 95 96
            if paddle.fluid.core.use_layout_autotune():
                self.assertEqual(conv_out.shape, [1, 14, 14, 8])
                self.assertEqual(predict.shape, [1, 2])
            else:
                self.assertEqual(conv_out.shape, [1, 8, 14, 14])
                self.assertEqual(predict.shape, [1, 2])
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
        else:
            conv_out, predict = self.train(data_format="NCHW")
            self.assertEqual(conv_out.shape, [1, 8, 14, 14])
            self.assertEqual(predict.shape, [1, 2])

    def test_transpose_op_transposer(self):
        conv = paddle.nn.Conv2D(3, 8, (3, 3))
        data = paddle.rand([1, 3, 16, 14])
        label_data = paddle.randint(0, 1, shape=[1, 1], dtype="int64")
        optimizer = paddle.optimizer.SGD(learning_rate=0.0001,
                                         parameters=conv.parameters())
        scaler = paddle.amp.GradScaler()
        with paddle.amp.auto_cast(level="O2"):
            conv_out = conv(data)
            # conv_out.shape = [1, 14, 12, 8] with NHWC
112
            # layout tuner will transpose conv_out to
113 114 115 116 117 118 119
            # [1, 8, 14, 12] with NCHW before the following transpose op.
            out = paddle.transpose(conv_out, perm=[0, 3, 1, 2])
            loss = out.mean()
        scaled = scaler.scale(loss)
        scaled.backward()
        scaler.minimize(optimizer, scaled)

120 121 122 123 124 125
        if paddle.fluid.core.use_layout_autotune():
            self.assertEqual(conv_out.shape, [1, 14, 12, 8])
            self.assertEqual(out.shape, [1, 12, 8, 14])
        else:
            self.assertEqual(conv_out.shape, [1, 8, 14, 12])
            self.assertEqual(out.shape, [1, 12, 8, 14])
126 127 128 129 130 131 132 133 134 135 136 137 138

    def test_flatten_op_transposer(self):
        conv = paddle.nn.Conv2D(3, 8, (3, 3))
        flatten = paddle.nn.Flatten(start_axis=1, stop_axis=2)
        data = paddle.rand([1, 3, 16, 14])
        with paddle.amp.auto_cast(level="O2"):
            conv_out = conv(data)
            # conv_out.shape = [1, 14, 12, 8] with NHWC
            # layout tuner will transpose conv_out to
            # [1, 8, 14, 12] with NCHW before the following flatten op
            # because it flatten the C and H dimensions.
            out = flatten(conv_out)

139 140 141 142 143 144
        if paddle.fluid.core.use_layout_autotune():
            self.assertEqual(conv_out.shape, [1, 14, 12, 8])
            self.assertEqual(out.shape, [1, 112, 12])
        else:
            self.assertEqual(conv_out.shape, [1, 8, 14, 12])
            self.assertEqual(out.shape, [1, 112, 12])
145

146 147 148 149 150 151 152
    def test_argmax_op_transposer_keep_dims(self):
        conv = paddle.nn.Conv2D(3, 8, (3, 3))
        data = paddle.rand([1, 3, 16, 14])
        with paddle.amp.auto_cast(level="O2"):
            conv_out = conv(data)
            # conv_out.shape = [1, 14, 12, 8] with NHWC
            out = paddle.argmax(conv_out, axis=1, keepdim=True)
153 154 155 156 157 158
        if paddle.fluid.core.use_layout_autotune():
            self.assertEqual(conv_out.shape, [1, 14, 12, 8])
            self.assertEqual(out.shape, [1, 14, 12, 1])
        else:
            self.assertEqual(conv_out.shape, [1, 8, 14, 12])
            self.assertEqual(out.shape, [1, 1, 14, 12])
159

160 161 162 163 164 165 166 167 168 169 170 171 172
    def test_argmax_op_transposer_ff(self):
        conv = paddle.nn.Conv2D(3, 8, (3, 3))
        data = paddle.rand([1, 3, 16, 14])
        with paddle.amp.auto_cast(level="O2"):
            conv_out = conv(data)
            # conv_out.shape = [1, 14, 12, 8] with NHWC
            out = paddle.argmax(conv_out)
        if paddle.fluid.core.use_layout_autotune():
            self.assertEqual(conv_out.shape, [1, 14, 12, 8])
            self.assertEqual(out.shape, [1])
        else:
            self.assertEqual(conv_out.shape, [1, 8, 14, 12])
            self.assertEqual(out.shape, [1])
173

174
    def test_argmax_op_transposer_t(self):
175 176 177 178 179 180 181
        conv = paddle.nn.Conv2D(3, 8, (3, 3))
        data = paddle.rand([1, 3, 16, 14])
        with paddle.amp.auto_cast(level="O2"):
            conv_out = conv(data)
            # conv_out.shape = [1, 14, 12, 8] with NHWC
            out = paddle.argmax(conv_out)

182 183 184 185 186 187
        if paddle.fluid.core.use_layout_autotune():
            self.assertEqual(conv_out.shape, [1, 14, 12, 8])
            self.assertEqual(out.shape, [1])
        else:
            self.assertEqual(conv_out.shape, [1, 8, 14, 12])
            self.assertEqual(out.shape, [1])
188

189 190 191 192 193 194 195 196 197
    def test_concat_op_transposer(self):
        in1 = paddle.rand([1, 8, 14, 12])
        conv = paddle.nn.Conv2D(3, 8, (3, 3))
        data = paddle.rand([1, 3, 16, 14])
        with paddle.amp.auto_cast(level="O2"):
            conv_out = conv(data)
            # conv_out.shape = [1, 14, 12, 8] with NHWC
            out = paddle.concat(x=[conv_out, in1], axis=0)

198 199 200 201 202 203
        if paddle.fluid.core.use_layout_autotune():
            self.assertEqual(conv_out.shape, [1, 14, 12, 8])
            self.assertEqual(out.shape, [2, 8, 14, 12])
        else:
            self.assertEqual(conv_out.shape, [1, 8, 14, 12])
            self.assertEqual(out.shape, [2, 8, 14, 12])
204 205 206 207 208 209 210 211 212 213 214

    def test_concat_op_no_transposer(self):
        conv = paddle.nn.Conv2D(3, 8, (3, 3))
        data1 = paddle.rand([1, 3, 16, 14])
        data2 = paddle.rand([1, 3, 16, 14])
        with paddle.amp.auto_cast(level="O2"):
            conv_out1 = conv(data1)
            conv_out2 = conv(data2)
            # conv_out.shape = [1, 14, 12, 8] with NHWC
            out = paddle.concat(x=[conv_out1, conv_out2], axis=0)

215 216 217 218 219 220
        if paddle.fluid.core.use_layout_autotune():
            self.assertEqual(conv_out1.shape, [1, 14, 12, 8])
            self.assertEqual(out.shape, [2, 14, 12, 8])
        else:
            self.assertEqual(conv_out1.shape, [1, 8, 14, 12])
            self.assertEqual(out.shape, [2, 8, 14, 12])
221

222

223
class TestAutoTuneAPI(unittest.TestCase):
224

225 226 227 228 229 230 231 232 233 234 235 236 237 238
    def test_set_config_warnings(self):
        with warnings.catch_warnings(record=True) as w:
            config = {"layout": {"enable": 1}}
            # On linux, we can open the file again to read the content
            # without closing the file, but on windows system, there is
            # no permission to open it again without closing it.
            tfile = tempfile.NamedTemporaryFile(mode="w+", delete=False)
            json.dump(config, tfile)
            tfile.close()
            paddle.incubate.autotune.set_config(tfile.name)
            os.remove(tfile.name)
            self.assertTrue(len(w) == 1)


239 240
if __name__ == '__main__':
    unittest.main()