test_beam_search_op.py 7.3 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yan Chunwei 已提交
17
import logging
18 19
from paddle.fluid.op import Operator, DynamicRecurrentOp
import paddle.fluid.core as core
Y
Yan Chunwei 已提交
20 21
import unittest
import numpy as np
22 23
import paddle.fluid as fluid
from paddle.fluid.framework import Program, program_guard
Y
Yan Chunwei 已提交
24 25 26 27 28 29 30 31 32


def create_tensor(scope, name, np_data):
    tensor = scope.var(name).get_tensor()
    tensor.set(np_data, core.CPUPlace())
    return tensor


class BeamSearchOpTester(unittest.TestCase):
33 34
    """unittest of beam_search_op"""

Y
Yan Chunwei 已提交
35 36 37
    def setUp(self):
        self.scope = core.Scope()
        self._create_ids()
38
        self._create_pre_scores()
Y
Yan Chunwei 已提交
39 40 41 42
        self._create_scores()
        self._create_pre_ids()
        self.scope.var('selected_ids')
        self.scope.var('selected_scores')
43
        self.scope.var('parent_idx')
Y
Yan Chunwei 已提交
44 45 46 47

    def test_run(self):
        op = Operator(
            'beam_search',
48 49
            pre_ids='pre_ids',
            pre_scores='pre_scores',
Y
Yan Chunwei 已提交
50 51 52 53
            ids='ids',
            scores='scores',
            selected_ids='selected_ids',
            selected_scores='selected_scores',
54
            parent_idx='parent_idx',
Y
Yan Chunwei 已提交
55 56 57
            level=0,
            beam_size=2,
            end_id=0, )
D
dzhwinter 已提交
58
        op.run(self.scope, core.CPUPlace())
Y
Yan Chunwei 已提交
59
        selected_ids = self.scope.find_var("selected_ids").get_tensor()
60
        selected_scores = self.scope.find_var("selected_scores").get_tensor()
61
        parent_idx = self.scope.find_var("parent_idx").get_tensor()
62 63 64 65 66 67 68
        self.assertTrue(
            np.allclose(
                np.array(selected_ids), np.array([4, 2, 3, 8])[:, np.newaxis]))
        self.assertTrue(
            np.allclose(
                np.array(selected_scores),
                np.array([0.5, 0.6, 0.9, 0.7])[:, np.newaxis]))
69
        self.assertEqual(selected_ids.lod(), [[0, 2, 4], [0, 1, 2, 3, 4]])
70 71
        self.assertTrue(
            np.allclose(np.array(parent_idx), np.array([0, 1, 2, 3])))
Y
Yan Chunwei 已提交
72 73

    def _create_pre_ids(self):
74
        np_data = np.array([[1, 2, 3, 4]], dtype='int64')
75 76 77 78 79
        tensor = create_tensor(self.scope, 'pre_ids', np_data)

    def _create_pre_scores(self):
        np_data = np.array([[0.1, 0.2, 0.3, 0.4]], dtype='float32')
        tensor = create_tensor(self.scope, 'pre_scores', np_data)
Y
Yan Chunwei 已提交
80 81

    def _create_ids(self):
82
        self.lod = [[0, 2, 4], [0, 1, 2, 3, 4]]
Y
Yan Chunwei 已提交
83
        np_data = np.array(
84
            [[4, 2, 5], [2, 1, 3], [3, 5, 2], [8, 2, 1]], dtype='int64')
Y
Yan Chunwei 已提交
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
        tensor = create_tensor(self.scope, "ids", np_data)
        tensor.set_lod(self.lod)

    def _create_scores(self):
        np_data = np.array(
            [
                [0.5, 0.3, 0.2],
                [0.6, 0.3, 0.1],
                [0.9, 0.5, 0.1],
                [0.7, 0.5, 0.1],
            ],
            dtype='float32')
        tensor = create_tensor(self.scope, "scores", np_data)
        tensor.set_lod(self.lod)


101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
class TestBeamSearchOpError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program(), Program()):
            pre_ids = fluid.data(
                name='pre_id', shape=[1], lod_level=2, dtype='int64')
            pre_scores = fluid.data(
                name='pre_scores', shape=[1], lod_level=2, dtype='float32')
            probs = fluid.data(name='probs', shape=[10000], dtype='float32')
            topk_scores, topk_indices = fluid.layers.topk(probs, k=4)
            accu_scores = fluid.layers.elementwise_add(
                x=fluid.layers.log(x=topk_scores),
                y=fluid.layers.reshape(
                    pre_scores, shape=[-1]),
                axis=0)

            def test_preids_Variable():
                # the input pre_ids must be Variable
                preids_data = np.random.randint(1, 5, [5, 1]).astype("int64")
                fluid.layers.beam_search(
                    pre_ids=preids_data,
                    pre_scores=pre_scores,
                    ids=topk_indices,
                    scores=accu_scores,
                    beam_size=4,
                    end_id=1)

            self.assertRaises(TypeError, test_preids_Variable)

            def test_prescores_Variable():
                # the input pre_scores must be Variable
                prescores_data = np.random.uniform(1, 5,
                                                   [5, 1]).astype("float32")
                fluid.layers.beam_search(
                    pre_ids=pre_ids,
                    pre_scores=prescores_data,
                    ids=topk_indices,
                    scores=accu_scores,
                    beam_size=4,
                    end_id=1)

            self.assertRaises(TypeError, test_prescores_Variable)

            def test_ids_Variable():
                # the input ids must be Variable or None
                ids_data = np.random.randint(1, 5, [5, 1]).astype("int64")
                fluid.layers.beam_search(
                    pre_ids=pre_ids,
                    pre_scores=pre_scores,
                    ids=ids_data,
                    scores=accu_scores,
                    beam_size=4,
                    end_id=1)

            self.assertRaises(TypeError, test_ids_Variable)

            def test_scores_Variable():
                # the input scores must be Variable
                scores_data = np.random.uniform(1, 5, [5, 1]).astype("float32")
                fluid.layers.beam_search(
                    pre_ids=pre_ids,
                    pre_scores=pre_scores,
                    ids=topk_indices,
                    scores=scores_data,
                    beam_size=4,
                    end_id=1)

            self.assertRaises(TypeError, test_scores_Variable)

            def test_preids_dtype():
                # the dtype of input pre_ids must be int64
                preids_type_data = fluid.data(
                    name='preids_type_data',
                    shape=[1],
                    lod_level=2,
                    dtype='float32')
                fluid.layers.beam_search(
                    pre_ids=preids_type_data,
                    pre_scores=pre_scores,
                    ids=topk_indices,
                    scores=accu_scores,
                    beam_size=4,
                    end_id=1)

            self.assertRaises(TypeError, test_preids_dtype)

            def test_prescores_dtype():
                # the dtype of input pre_scores must be float32
                prescores_type_data = fluid.data(
                    name='prescores_type_data',
                    shape=[1],
                    lod_level=2,
                    dtype='int64')
                fluid.layers.beam_search(
                    pre_ids=pre_ids,
                    pre_scores=prescores_type_data,
                    ids=topk_indices,
                    scores=accu_scores,
                    beam_size=4,
                    end_id=1)

            self.assertRaises(TypeError, test_prescores_dtype)


Y
Yan Chunwei 已提交
204 205
if __name__ == '__main__':
    unittest.main()