utils.py 59.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

17
import ast
18
import astor
19 20
import atexit
import copy
21
import collections
22
from paddle.utils import gast
23 24 25 26
import inspect
import os
import six
import tempfile
27
import textwrap
28
import numpy as np
29

30
import paddle
31
from paddle.fluid import unique_name
32
from paddle.fluid.data_feeder import convert_dtype
33 34
from paddle.fluid.layer_helper import LayerHelper
from paddle.fluid import core
35

36 37 38 39 40 41
# Note(Aurelius): Do not forget the dot `.` to distinguish other
# module such as paddlenlp.
PADDLE_MODULE_PREFIX = 'paddle.'
DYGRAPH_MODULE_PREFIX = 'paddle.fluid.dygraph'
DYGRAPH_TO_STATIC_MODULE_PREFIX = 'paddle.fluid.dygraph.dygraph_to_static'

42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

class BaseNodeVisitor(gast.NodeVisitor):
    """
    Implement customized NodeVisitor inherited from gast.NodeVisitor. 
    Ancestor nodes are traced to easily support more operations of currently
    visited node.
    """

    def __init__(self):
        self.ancestor_nodes = []

    def visit(self, node):
        """Visit a node."""
        self.ancestor_nodes.append(node)

        method = 'visit_' + node.__class__.__name__
        visitor = getattr(self, method, self.generic_visit)
        ret = visitor(node)
        self.ancestor_nodes.pop()
        return ret


64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
def data_layer_not_check(name, shape, dtype='float32', lod_level=0):
    """
    This function creates a Tensor on the global block. The created Tensor
    doesn't check the dtype and the shape of feed data because dygraph input
    data can be various-length. This API is used in translating dygraph into
    static graph.

     Note: 
        The default :code:`stop_gradient` attribute of the Tensor created by
        this API is true, which means the gradient won't be passed backward
        through the data Tensor. Set :code:`var.stop_gradient = False` If
        user would like to pass backward gradient.

    Args:
       name (str): The name/alias of the Tensor, see :ref:`api_guide_Name`
           for more details.
       shape (list|tuple): List|Tuple of integers declaring the shape. You can
           set "None" at a dimension to indicate the dimension can be of any
           size. For example, it is useful to set changeable batch size as "None" 
       dtype (np.dtype|VarType|str, optional): The type of the data. Supported
           dtype: bool, float16, float32, float64, int8, int16, int32, int64,
           uint8. Default: float32
       lod_level (int, optional): The LoD level of the LoDTensor. Usually users
           don't have to set this value. For more details about when and how to
           use LoD level, see :ref:`user_guide_lod_tensor` . Default: 0

    Returns:
        Tensor: The global Tensor that gives access to the data.
    """
    helper = LayerHelper('data', **locals())
    shape = list(shape)
    for i in six.moves.range(len(shape)):
        if shape[i] is None:
            shape[i] = -1

    return helper.create_variable(name=name,
                                  shape=shape,
                                  dtype=dtype,
                                  type=core.VarDesc.VarType.LOD_TENSOR,
                                  stop_gradient=True,
                                  lod_level=lod_level,
                                  is_data=True,
                                  need_check_feed=False)


109
# imp is deprecated in python3
T
tianshuo78520a 已提交
110
from importlib.machinery import SourceFileLoader
111

112 113 114 115 116 117 118 119 120 121
dygraph_class_to_static_api = {
    "CosineDecay": "cosine_decay",
    "ExponentialDecay": "exponential_decay",
    "InverseTimeDecay": "inverse_time_decay",
    "NaturalExpDecay": "natural_exp_decay",
    "NoamDecay": "noam_decay",
    "PiecewiseDecay": "piecewise_decay",
    "PolynomialDecay": "polynomial_decay",
}

122
FOR_ITER_INDEX_PREFIX = '__for_loop_var_index'
123 124
FOR_ITER_TUPLE_PREFIX = '__for_loop_iter_tuple'
FOR_ITER_TUPLE_INDEX_PREFIX = '__for_loop_iter_tuple_index'
125
FOR_ITER_VAR_LEN_PREFIX = '__for_loop_var_len'
126
FOR_ITER_VAR_NAME_PREFIX = '__for_loop_iter_var'
127
FOR_ITER_ZIP_TO_LIST_PREFIX = '__for_loop_iter_zip'
128

129 130 131 132 133 134 135 136
# FullArgSpec is valid from Python3. Defined a Namedtuple to
# to make it available in Python2.
FullArgSpec = collections.namedtuple('FullArgSpec', [
    'args', 'varargs', 'varkw', 'defaults', 'kwonlyargs', 'kwonlydefaults',
    'annotations'
])


137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
class UndefinedVar:

    def __init__(self, name):
        self.name = name

    def check(self):
        raise UnboundLocalError(
            "local variable '{}' should be created before using it.")


def saw(x):
    if isinstance(x, UndefinedVar):
        return x.check()
    else:
        return x


154 155 156 157 158
def getfullargspec(target):
    if hasattr(inspect, "getfullargspec"):
        return inspect.getfullargspec(target)
    else:
        argspec = inspect.getargspec(target)
159 160 161 162 163 164 165
        return FullArgSpec(args=argspec.args,
                           varargs=argspec.varargs,
                           varkw=argspec.keywords,
                           defaults=argspec.defaults,
                           kwonlyargs=[],
                           kwonlydefaults=None,
                           annotations={})
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187


def parse_arg_and_kwargs(function):
    """
    Returns full argument names as list. e.g ['x', 'y', 'z']
    """
    fullargspec = getfullargspec(function)
    arg_names = fullargspec.args
    if arg_names and 'self' == arg_names[0]:
        arg_names = fullargspec.args[1:]

    # parse default kwargs
    default_kwargs = {}
    default_values = fullargspec.defaults
    if default_values:
        assert len(default_values) <= len(arg_names)
        default_kwarg_names = arg_names[-len(default_values):]
        default_kwargs = dict(zip(default_kwarg_names, default_values))

    return arg_names, default_kwargs


W
WeiXin 已提交
188 189 190 191 192 193 194 195 196
def parse_varargs_name(function):
    """
    Returns varargs name string of function. e.g: 'input' from `foo(x, *input)`
    """
    fullargspec = getfullargspec(function)
    varargs = fullargspec.varargs
    return varargs


197 198 199 200 201 202 203 204
def type_name(v):
    return type(v).__name__


def make_hashable(x, error_msg=None):
    """
    Makes input `x` hashable.

205
    For some unhashable objects, such as `dict/list/set/np.ndarray`,applying hash function by using their values.
206
    """
207
    if isinstance(x, (tuple, list, set)):
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
        return tuple(map(make_hashable, x))

    try:
        hash(x)
    except TypeError:
        if isinstance(x, np.ndarray):
            # Note: `tostring()` will return the binary data from np.ndarray that
            # means different value will lead to different hash code.
            return hash(x.tostring())
        elif isinstance(x, dict):
            return tuple(map(make_hashable, x.values()))

        error_msg = error_msg or "Requires a hashable object."
        raise ValueError(error_msg + " But received type: %s" % type_name(x))

    return x

225

226 227 228 229 230 231 232
def _is_api_in_module_helper(obj, module_prefix):
    m = inspect.getmodule(obj)
    return m is not None and m.__name__.startswith(module_prefix)


def is_api_in_module(node, module_prefix):
    assert isinstance(node, gast.Call), "Input non-Call node for is_dygraph_api"
233 234 235 236 237 238 239 240

    # Python can have gast.Call as function, for example: covert_call(func)(x)
    # We only check the most outside function
    func_node = node.func
    while isinstance(func_node, gast.Call):
        func_node = func_node.func

    func_str = astor.to_source(gast.gast_to_ast(func_node)).strip()
241
    try:
242 243 244 245 246
        # TODO(liym27):
        #  Consider a better to import modules like:
        #  source_file = inspect.getfile(dyfunc)
        #  import_statements = ImportVisitor(source_file).transform()
        #  import_str = "".join(import_statements)
247
        import paddle
L
liym27 已提交
248
        import paddle.fluid as fluid
249
        import paddle.fluid.dygraph as dygraph
L
liym27 已提交
250
        import paddle.fluid.layers as layers
251
        import paddle.jit.dy2static as _jst
252

253
        from paddle.fluid.dygraph import to_variable
254 255
        from paddle import to_tensor

256 257
        return eval("_is_api_in_module_helper({}, '{}')".format(
            func_str, module_prefix))
258
    except Exception:
259 260 261 262
        return False


def is_dygraph_api(node):
263

264
    # Note: A api in module dygraph_to_static is not a real dygraph api.
265
    if is_api_in_module(node, DYGRAPH_TO_STATIC_MODULE_PREFIX):
266 267
        return False

268 269
    # TODO(liym27): A better way to determine whether it is a dygraph api.
    #  Consider the decorator @dygraph_only
270
    return is_api_in_module(node, DYGRAPH_MODULE_PREFIX)
271 272 273


def is_paddle_api(node):
274 275 276 277 278 279
    return is_api_in_module(node, PADDLE_MODULE_PREFIX)


def is_paddle_func(func):
    m = inspect.getmodule(func)
    return m is not None and m.__name__.startswith(PADDLE_MODULE_PREFIX)
280 281 282 283 284 285 286 287 288 289 290 291 292 293


# Is numpy_api cannot reuse is_api_in_module because of numpy module problem
def is_numpy_api(node):
    assert isinstance(node, gast.Call), "Input non-Call node for is_numpy_api"
    func_str = astor.to_source(gast.gast_to_ast(node.func))
    try:
        import numpy as np
        module_result = eval("_is_api_in_module_helper({}, '{}')".format(
            func_str, "numpy"))
        # BUG: np.random.uniform doesn't have module and cannot be analyzed
        # TODO: find a better way
        if not module_result:
            return func_str.startswith("numpy.") or func_str.startswith("np.")
294
    except Exception:
295 296 297
        return False


L
liym27 已提交
298 299 300
def is_control_flow_to_transform(node,
                                 static_analysis_visitor=None,
                                 var_name_to_type=None):
301
    """
L
liym27 已提交
302 303
    Determines whether the node is a PaddlePaddle control flow statement which needs to
    be transformed into a static graph control flow statement.
304 305 306
    """
    assert isinstance(node, gast.AST), \
        "The type of input node must be gast.AST, but received %s." % type(node)
307 308 309
    visitor = IsControlFlowVisitor(node,
                                   static_analysis_visitor,
                                   node_var_type_map=var_name_to_type)
L
liym27 已提交
310 311
    need_to_transform = visitor.transform()
    return need_to_transform
312 313


314 315
def _delete_keywords_from(node):
    assert isinstance(node, gast.Call)
316
    func_src = astor.to_source(gast.gast_to_ast(node.func))
317 318 319 320 321 322 323 324 325 326 327 328
    import paddle.fluid as fluid
    full_args = eval("inspect.getargspec({})".format(func_src))
    full_args_name = full_args[0]

    node.keywords = [k for k in node.keywords if k.arg in full_args_name]
    return


def to_static_api(dygraph_class):
    if dygraph_class in dygraph_class_to_static_api:
        return dygraph_class_to_static_api[dygraph_class]
    else:
329 330 331
        raise NotImplementedError(
            "Paddle dygraph API {} cannot be converted "
            "to static graph at present.".format(dygraph_class))
332 333 334 335 336 337 338 339 340 341


def _add_keywords_to(node, dygraph_api_name):
    assert isinstance(node, gast.Call)
    if dygraph_api_name == "Linear":
        for ast_keyword in node.keywords:
            if ast_keyword.arg == "output_dim":
                ast_keyword.arg = "size"

        node.keywords.append(
342 343
            gast.keyword(arg="num_flatten_dims",
                         value=gast.Constant(value=-1, kind=None)))
344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361

    if dygraph_api_name == "BilinearTensorProduct":
        for ast_keyword in node.keywords:
            if ast_keyword.arg == "output_dim":
                ast_keyword.arg = "size"

    if dygraph_api_name == "PRelu":
        for ast_keyword in node.keywords:
            if ast_keyword.arg == "input":
                ast_keyword.arg = "x"
    return


def to_static_ast(node, class_node):
    assert isinstance(node, gast.Call)
    assert isinstance(class_node, gast.Call)
    static_api = to_static_api(class_node.func.attr)

362 363 364 365 366 367 368 369 370
    node.func = gast.Attribute(attr=static_api,
                               ctx=gast.Load(),
                               value=gast.Attribute(attr='layers',
                                                    ctx=gast.Load(),
                                                    value=gast.Name(
                                                        ctx=gast.Load(),
                                                        id='fluid',
                                                        annotation=None,
                                                        type_comment=None)))
371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390

    update_args_of_func(node, class_node, 'forward')

    node.args.extend(class_node.args)
    node.keywords.extend(class_node.keywords)
    _add_keywords_to(node, class_node.func.attr)
    _delete_keywords_from(node)

    gast.fix_missing_locations(node)

    return node


def update_args_of_func(node, dygraph_node, method_name):
    assert isinstance(node, gast.Call)
    if method_name not in ["__init__", "forward"]:
        raise ValueError(
            "The method name of class to update args should be '__init__' or 'forward'"
        )

391
    class_src = astor.to_source(gast.gast_to_ast(dygraph_node.func))
392 393 394
    import paddle.fluid as fluid
    if method_name == "__init__" or eval(
            "issubclass({}, fluid.dygraph.Layer)".format(class_src)):
395 396
        full_args = eval("inspect.getargspec({}.{})".format(
            class_src, method_name))
397 398 399 400 401 402 403 404 405 406 407
        full_args_name = [
            arg_name for arg_name in full_args[0] if arg_name != "self"
        ]
    else:
        full_args_name = []
    added_keywords = []
    for idx, arg in enumerate(node.args):
        added_keywords.append(gast.keyword(arg=full_args_name[idx], value=arg))

    node.args = []
    node.keywords = added_keywords + node.keywords
408 409 410


def create_api_shape_node(tensor_shape_node):
411 412 413 414 415
    assert isinstance(tensor_shape_node,
                      (gast.Name, gast.Attribute, gast.Subscript))

    if isinstance(tensor_shape_node, gast.Name):
        api_shape_node = gast.Call(
416
            func=gast.parse('paddle.shape').body[0].value,
417 418 419
            args=[tensor_shape_node],
            keywords=[])
        return api_shape_node
420 421 422

    if isinstance(tensor_shape_node, gast.Attribute):
        api_shape_node = gast.Call(
423
            func=gast.parse('paddle.shape').body[0].value,
424 425 426 427 428 429 430 431
            args=[tensor_shape_node.value],
            keywords=[])
        return api_shape_node

    if isinstance(tensor_shape_node, gast.Subscript):
        result_node = copy.deepcopy(tensor_shape_node)
        result_node.value = create_api_shape_node(result_node.value)
        return result_node
432 433


434
def get_constant_variable_node(name, value, shape=[1], dtype='int64'):
435 436
    return gast.parse('%s = paddle.full(%s, "%s", %s)' %
                      (name, str(shape), str(value), dtype))
437 438 439 440 441 442 443 444 445


def get_attribute_full_name(node):
    assert isinstance(
        node,
        gast.Attribute), "Input non-Attribute node to get attribute full name"
    return astor.to_source(gast.gast_to_ast(node)).strip()


446
def generate_name_node(name_ids, ctx=gast.Load(), gen_tuple_if_single=False):
447
    """
448 449 450 451 452 453 454
    If name_ids is list or tuple or set with multiple strings, this function
    generates gast.Tuple of gast.Name.
    If the name_ids is single string or contains only 1 string, this function
    returns gast.Name if gen_tuple_if_single==False else returns gast.Tuple
    with only one gast.Name

    This function is used at several gast.Return statements.
455 456 457 458
    """
    if isinstance(name_ids, six.string_types):
        name_ids = [name_ids]
    if not isinstance(name_ids, (list, tuple, set)):
459 460 461
        raise TypeError(
            'name_ids must be list or tuple or set, but received %s' %
            type(type(name_ids)))
462 463 464 465 466 467 468 469 470 471

    def create_node_for_name(name):
        if '.' not in name:
            return gast.Name(id=name,
                             ctx=ctx,
                             annotation=None,
                             type_comment=None)
        return gast.parse(name).body[0].value

    gast_names = [create_node_for_name(name_id) for name_id in name_ids]
472
    if len(gast_names) == 1 and not gen_tuple_if_single:
473 474 475 476 477 478 479 480 481 482 483 484 485
        name_node = gast_names[0]
    else:
        name_node = gast.Tuple(elts=gast_names, ctx=ctx)
    return name_node


def create_funcDef_node(nodes, name, input_args, return_name_ids):
    """
    Wrapper all statements of nodes into one ast.FunctionDef, which can be
    called by ast.Call.
    """
    nodes = copy.copy(nodes)
    # add return statement
486 487
    if return_name_ids:
        nodes.append(gast.Return(value=generate_name_node(return_name_ids)))
488 489
    else:
        nodes.append(gast.Return(value=None))
490 491 492 493 494 495
    func_def_node = gast.FunctionDef(name=name,
                                     args=input_args,
                                     body=nodes,
                                     decorator_list=[],
                                     returns=None,
                                     type_comment=None)
496 497 498
    return func_def_node


499 500 501 502 503 504 505 506
def index_in_list(array_list, item):
    try:
        return array_list.index(item)
    except ValueError:
        # Item not in array_list
        return -1


507 508 509 510 511 512 513 514 515 516
def create_assign_node(name, node):
    """
    Creates a `gast.Assign` node by given name_id as target and node as value.
    """
    targets = generate_name_node(name, ctx=gast.Store())
    assign_node = gast.Assign(targets=[targets], value=node)
    return targets, assign_node


class RenameTransformer(gast.NodeTransformer):
517

518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544
    def __init__(self, node):
        assert isinstance(
            node, gast.AST), "RenameTransformer only accepts gast.AST as input"
        self.root = node
        self.old_name = ""
        self.new_name = ""

    def rename(self, old_name, new_name):
        self.old_name = old_name
        self.new_name = new_name
        self.visit(self.root)

    def visit_Name(self, node):
        self.generic_visit(node)
        if node.id == self.old_name:
            node.id = self.new_name
        return node

    def visit_Attribute(self, node):
        self.generic_visit(node)
        attr_full_name = get_attribute_full_name(node)
        if attr_full_name == self.old_name:
            new_name_node = gast.parse(self.new_name).body[0].value
            return new_name_node
        return node


545
def ast_to_func(ast_root, dyfunc, delete_on_exit=True):
546 547
    """
    Transform modified AST of decorated function into python callable object.
548 549
    TODO: If only decorate one of inner function instead of decorating the main
    function, the other inner functions are invisible for the decorated function.
550
    """
551

552
    def remove_if_exit(filepath):
553 554 555
        if os.path.exists(filepath):
            os.remove(filepath)

556
    source = ast_to_source_code(ast_root)
557
    source = _inject_import_statements() + source
558

559 560 561 562
    f = tempfile.NamedTemporaryFile(mode='w',
                                    suffix='.py',
                                    delete=False,
                                    encoding='utf-8')
563 564 565 566 567
    with f:
        module_name = os.path.basename(f.name[:-3])
        f.write(source)

    if delete_on_exit:
568 569
        atexit.register(lambda: remove_if_exit(f.name))
        atexit.register(lambda: remove_if_exit(f.name[:-3] + ".pyc"))
570

T
tianshuo78520a 已提交
571
    module = SourceFileLoader(module_name, f.name).load_module()
572
    func_name = dyfunc.__name__
W
WeiXin 已提交
573 574 575 576 577 578 579 580
    # The 'forward' or 'another_forward' of 'TranslatedLayer' cannot be obtained
    # through 'func_name'. So set the special function name '__i_m_p_l__'.
    if hasattr(module, '__i_m_p_l__'):
        callable_func = getattr(module, '__i_m_p_l__')
        callable_func.__name__ = func_name
    elif hasattr(module, func_name):
        callable_func = getattr(module, func_name)
    else:
581 582 583
        raise ValueError(
            'Function: %s doesn\'t exist in the Module transformed from AST.' %
            func_name)
584 585 586 587 588 589 590 591
    # After transform dygraph function into callable_func saved in tmp file,
    # it lost the global variables from imported statements or defined in source file.
    # Recovers the necessary variables by `__globals__`.
    recover_globals_attribute(dyfunc, callable_func)

    return callable_func, f.name


592 593
def _inject_import_statements():
    import_statements = [
594
        "import paddle", "from paddle import Tensor",
595 596
        "import paddle.fluid as fluid", "import paddle.jit.dy2static as _jst",
        "from typing import *", "import numpy as np"
597 598 599 600
    ]
    return '\n'.join(import_statements) + '\n'


601 602 603 604 605
def recover_globals_attribute(src_obj, dst_obj):
    attr_name = '__globals__'

    src_globals = getattr(src_obj, attr_name, {})
    dst_globals = getattr(dst_obj, attr_name, {})
606

607
    for k, v in six.iteritems(src_globals):
608 609 610
        # ignore builtin attribute.
        if not (k.startswith('__') and k.endswith('__')):
            dst_globals[k] = v
611 612


613 614 615 616 617 618
def func_to_source_code(function, dedent=True):
    """
    Transforms function into raw string of source code.
    """
    if not (inspect.isfunction(function) or inspect.ismethod(function)):
        raise TypeError(
619 620
            "The type of 'function' should be a function or method, but received {}."
            .format(type(function).__name__))
621
    source_code_list, _ = inspect.getsourcelines(function)
622
    # Replace comments with blank lines so that error messages are not misplaced
623
    source_code_list = [
624 625
        line if not line.lstrip().startswith('#') else '\n'
        for line in source_code_list
626 627
    ]
    source_code = ''.join(source_code_list)
628 629 630 631 632 633
    if dedent:
        source_code = textwrap.dedent(source_code)

    return source_code


634 635
def ast_to_source_code(ast_node):
    """
636
    Transforms ast node into source code.
637 638 639 640 641 642 643 644 645
    """
    if not isinstance(ast_node, (gast.AST, ast.AST)):
        raise TypeError(
            "Type of ast_root should be gast.AST or ast.AST, but received %s." %
            type(ast_node))
    if isinstance(ast_node, gast.AST):
        ast_node = gast.gast_to_ast(ast_node)
    source_code = astor.to_source(ast_node)
    return source_code
L
liym27 已提交
646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668


def is_candidate_node(node):
    """
    Nodes with specified type will be dependent on tensor.
    """
    is_compare_node = isinstance(node, (gast.Compare, gast.BoolOp, gast.UnaryOp,
                                        gast.For, gast.If, gast.While))
    # TODO(Aurelius84): `.numpy()` may be an customized function,
    # and should consider a more elegant way to solve this problem.
    has_numpy_attr = ".numpy()" in ast_to_source_code(node)
    return is_compare_node or has_numpy_attr


def compare_with_none(node):
    """
    Whether the comparator of `gast.Compare` node is `None`.
    """
    if isinstance(node, gast.Compare):
        for child in [node.left, node.comparators]:
            # node.comparators is a list.
            if isinstance(child, list):
                child = child[0]
669 670 671
            if (isinstance(child, gast.Constant)
                    and child.value is None) or (isinstance(child, gast.Name)
                                                 and child.id == 'None'):
L
liym27 已提交
672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688
                return True
    return False


class IsControlFlowVisitor(gast.NodeVisitor):
    """
    Judge whether the ast_node of control flow from Dygraph code dependent on paddle Tensor.
    `ast_node` can be gast.If, gast.For, gast.While, gast.If.test(gast.Compare, gast.BoolOp, gast.UnaryOp).

    If returns True,
    gast.If.test must meet at least one of the following requirements:
        1. involves at least one var whose type is Tensor.
        2. the Tensor var calls `.numpy()[]` interface or Tensor.shape is [1].
        3. involves Tensor.shape[i] and the shape[i] is unknown in compile time.
    gast.While must meet at least one of the requirements 1 to 5:
        4. has `break` statement.
        5. has `continue` statement.
689
    gast.For must meet at least one of the requirements 4 to 8:
L
liym27 已提交
690
        6. calls `range` function in `for` statement and the argument of range is Tensor.
691 692
        7. calls `enumerate` function in `for` statement and the argument of enumerate is Tensor.
        8. the iterable varaible in `for` statement is Tensor.
L
liym27 已提交
693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727
        TODO: Support non-range case

    The following examples should not be considered as control_flow_if:
        1. `if Tensor_var` or `if Tensor_var is None`
        2. if Tensor.shape[i] is determined with fixed value (not -1 or None)

    Note: pred in ConditionalBlock require variable, which means all vars should be Tensor
          or transformed into Tensor, like fill_constant(shape=[1], dtype='int32', value=Tensor.shape[i]).

    TODO: 1. need to deal with `tensor.shape[i]` which need to eval the data of shape[i],
             because reshape_op may be called before this statement.
    """

    def __init__(self,
                 ast_node,
                 static_analysis_visitor=None,
                 node_var_type_map=None):
        assert isinstance(
            ast_node, gast.AST
        ), "Type of input node should be gast.AST, but received %s." % type(
            ast_node)
        self.ast_root = ast_node
        if static_analysis_visitor is None:
            from .static_analysis import StaticAnalysisVisitor
            static_analysis_visitor = StaticAnalysisVisitor(ast_node)
        self.static_analysis_visitor = static_analysis_visitor
        self.node_to_wrapper_map = self.static_analysis_visitor.get_node_to_wrapper_map(
        )
        self.node_var_type_map = node_var_type_map

        self.is_control_flow_num = 0
        self._compare_node_tenor_set = set()

    def transform(self):
        node = self.ast_root
728 729 730 731 732 733 734 735
        if isinstance(node, gast.If):
            self._visit_If(node)
        elif isinstance(node, gast.For):
            self._visit_For(node)
        elif isinstance(node, gast.While):
            self._visit_While(node)
        else:
            self.visit(node)
L
liym27 已提交
736 737 738 739 740 741 742 743 744
        return self.is_control_flow_num > 0

    def _visit_If(self, node):
        assert isinstance(node, gast.If)
        self.visit(node.test)
        return

    def _visit_For(self, node):
        assert isinstance(node, gast.For)
745 746 747 748 749 750 751 752 753 754 755 756 757 758
        if isinstance(node.iter, gast.Call):
            # for in range(var[0]|var.numpy()[0]) or for in enumerate(var|var.numpy())
            if isinstance(node.iter.func, gast.Name):
                if node.iter.func.id == "range" or node.iter.func.id == "enumerate":
                    for arg in node.iter.args:
                        self.visit(arg)
                else:
                    return
            # for in var.numpy()
            elif isinstance(node.iter.func, gast.Attribute):
                if node.iter.func.attr == 'numpy':
                    self._visit_Call(node.iter)
                else:
                    return
759 760
            else:
                return
761 762 763
        elif isinstance(node.iter, gast.Name):
            # for in var
            self.visit(node.iter)
764
        else:
L
liym27 已提交
765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802
            return

        for child_node in gast.walk(node):
            if isinstance(child_node, (gast.Continue, gast.Break)):
                self._visit_break_continue(child_node)
        return

    def _visit_While(self, node):
        assert isinstance(node, gast.While)
        test = node.test
        self.generic_visit(test)
        for child_node in gast.walk(node):
            if isinstance(child_node, (gast.Continue, gast.Break)):
                self._visit_break_continue(child_node)
        return

    def _visit_break_continue(self, node):
        assert isinstance(node, (gast.Break, gast.Continue))
        wrapper_node = self.node_to_wrapper_map.get(node)
        if not wrapper_node:
            # Transformed node is not in node_to_wrapper_map
            return

        while wrapper_node.parent:
            parent_node = wrapper_node.parent.node
            if isinstance(parent_node, (gast.For, gast.While)):
                if parent_node is self.ast_root:
                    self.is_control_flow_num += 1
                    return
                else:
                    return

            wrapper_node = wrapper_node.parent

        return

    def visit_BoolOp(self, node):
        for i, child in enumerate(node.values):
803
            self.visit(child)
L
liym27 已提交
804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852
        return node

    def visit_Compare(self, node):
        pre_control_flow_num = self.is_control_flow_num
        if not compare_with_none(node):
            self.generic_visit(node)
            for child in gast.walk(node):
                if isinstance(child, gast.Subscript):
                    self._visit_Subscript(child)
        if self.is_control_flow_num > pre_control_flow_num:
            self._compare_node_tenor_set.add(node)
        return node

    def _visit_Subscript(self, node):
        self.generic_visit(node)
        if hasattr(node, 'value') and isinstance(node.value, gast.Call):
            self._visit_Call(node.value)
        return node

    def _visit_Call(self, node):
        assert isinstance(node, gast.Call)
        if isinstance(node.func, gast.Attribute):
            attr_node = node.func
            if attr_node.attr == 'numpy':
                self.is_control_flow_num += 1

    def visit_Call(self, node):
        self._visit_Call(node)
        if is_paddle_api(node):
            self.is_control_flow_num += 1
        return node

    def visit_Name(self, node):
        if self._is_node_with_tensor(node, node.id):
            self.is_control_flow_num += 1
        return node

    def visit_Constant(self, node):
        if self._is_node_with_tensor(node, node.value):
            self.is_control_flow_num += 1
        return node

    def _is_node_with_tensor(self, node, name_id):
        from paddle.fluid.dygraph.dygraph_to_static.static_analysis import NodeVarType

        # Look up the node_var_type_map by name_id.
        if self.node_var_type_map:
            if name_id and isinstance(name_id, six.string_types):
                var_type = self.node_var_type_map.get(name_id, None)
853
                if var_type and var_type & NodeVarType.TENSOR_TYPES:
L
liym27 已提交
854 855
                    return True
        # if not found, look up the node_to_wrapper_map by node.
856
        wrapper_node = self.node_to_wrapper_map.get(node, None)
L
liym27 已提交
857
        if wrapper_node is not None:
858
            if wrapper_node.node_var_type & NodeVarType.TENSOR_TYPES:
L
liym27 已提交
859 860 861 862 863 864
                return True

        return False

    def get_compare_nodes_with_tensor(self):
        return self._compare_node_tenor_set
865 866 867 868


class NameNodeReplaceTransformer(gast.NodeTransformer):
    """
869
    This class replaces specified gast.Name node by replace_node.
870 871 872 873
    """

    def __init__(self, root_node, target_name, replace_node):
        assert isinstance(target_name, str)
874 875 876 877 878 879 880 881 882 883 884 885 886 887

        # NOTE(liym27):
        # Use gast.Name to replace gast.Name, otherwise, errors may occur.
        #
        # For examples:
        # If using a gast.Subscript to replace gast.Name, and the original gast.Name
        # is in the arguments of FunctionDef, an exception will be raised.
        #
        # ```
        # def func(x[i])) # x[i] can not be a argument
        #    # ...
        # ```

        assert isinstance(replace_node, gast.Name)
888 889 890 891 892 893 894 895 896 897
        self.target_name = target_name
        self.replace_node = replace_node

        self.visit(root_node)

    def visit_Name(self, node):
        if node.id == self.target_name:
            return self.replace_node
        return node

898 899 900 901 902 903 904 905 906 907
    def visit_Nonlocal(self, node):
        names = node.names

        def replace(s):
            if s == self.target_name: return self.replace_node.id
            return s

        node.names = list(map(replace, names))
        return node

908

909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952
class ForLoopTuplePreTransformer(gast.NodeTransformer):
    """
    ForNodeVisitor parses 3 type statements (Here var is VarBase(Tensor) or python variable):
        1). for x in range(var[*]|var.numpy()[*])
        2). for x in var|var.numpy()
        3). for i, x in enumerate(var|var.numpy())

        We chose these 3 types because they are easier (x can be variable name iterating in var).
        However, users can write tuples in Python for loop, such as
        1). for var1, var2 in var|var.numpy()
        2). for t in enumerate(var|var.numpy())
        2). for i, (var1, var2, va3) in enumerate(var|var.numpy())

        To handle these case, this method will do the rewrite tuple pre-process:
        1). Non-enumerate case: for var1, var2 in var|var.numpy() will be re-written as:
          for FOR_ITER_TUPLE_PREFIX_x in var | var.numpy():
            var1 = FOR_ITER_TUPLE_PREFIX_x[0]
            var2 = FOR_ITER_TUPLE_PREFIX_x[1]
        2). Enumerate out tuple case: for t in enumerate(var|var.numpy) will be rewritten as:
          for FOR_ITER_TUPLE_INDEX_PREFIX_x, FOR_ITER_TUPLE_PREFIX_x in enumerate(var|var.numpy):
            t = (FOR_ITER_TUPLE_INDEX_PREFIX_x, FOR_ITER_TUPLE_PREFIX_x)
        3). Enumerate inner tuple case: for i, (var1, (var2, va3)) in enumerate(var|var.numpy()) will
        be re-written as:
          for i, FOR_ITER_TUPLE_PREFIX_x in var | var.numpy():
            var1 = FOR_ITER_TUPLE_PREFIX_x[0]
            var2 = FOR_ITER_TUPLE_PREFIX_x[1][0]
            var3 = FOR_ITER_TUPLE_PREFIX_x[1][1]
    """

    def __init__(self, wrapper_root):
        self.wrapper_root = wrapper_root
        self.root = wrapper_root.node

    def transform(self):
        self.visit(self.root)

    def visit_For(self, node):
        if self.is_for_enumerate_iter(node):
            if isinstance(node.target, (gast.Name, gast.Attribute)):
                # Out tuple case
                out_tuple_name = ast_to_source_code(node.target).strip()
                tuple_iter_name = unique_name.generate(
                    FOR_ITER_TUPLE_INDEX_PREFIX)
                tuple_var_name = unique_name.generate(FOR_ITER_TUPLE_PREFIX)
953 954 955 956 957 958 959 960 961 962 963
                node.target = gast.Tuple(elts=[
                    gast.Name(id=tuple_iter_name,
                              ctx=gast.Store(),
                              annotation=None,
                              type_comment=None),
                    gast.Name(id=tuple_var_name,
                              ctx=gast.Store(),
                              annotation=None,
                              type_comment=None)
                ],
                                         ctx=gast.Store())
964 965
                node.body.insert(
                    0,
966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984
                    gast.Assign(targets=[
                        gast.Name(id=out_tuple_name,
                                  ctx=gast.Store(),
                                  annotation=None,
                                  type_comment=None)
                    ],
                                value=gast.Tuple(elts=[
                                    gast.Name(id=tuple_iter_name,
                                              ctx=gast.Load(),
                                              annotation=None,
                                              type_comment=None),
                                    gast.Name(id=tuple_var_name,
                                              ctx=gast.Load(),
                                              annotation=None,
                                              type_comment=None)
                                ],
                                                 ctx=gast.Load())))
            elif isinstance(node.target, (gast.List, gast.Tuple)) and len(
                    node.target.elts) >= 2 and isinstance(
985 986 987 988
                        node.target.elts[1], (gast.List, gast.Tuple)):
                # Inner tuple case
                inner_tuple_name = unique_name.generate(FOR_ITER_TUPLE_PREFIX)
                origin_inner_tuple_node = node.target.elts[1]
989 990 991 992
                node.target.elts[1] = gast.Name(id=inner_tuple_name,
                                                ctx=gast.Store(),
                                                annotation=None,
                                                type_comment=None)
993 994 995 996 997 998 999
                node.body[0:0] = self.tuple_to_stmts(origin_inner_tuple_node,
                                                     inner_tuple_name)
        elif self.is_for_iter(node) and isinstance(node.target,
                                                   (gast.List, gast.Tuple)):
            # Non-enumrate case:
            tuple_name = unique_name.generate(FOR_ITER_TUPLE_PREFIX)
            origin_tuple_node = node.target
1000 1001 1002 1003
            node.target = gast.Name(id=tuple_name,
                                    ctx=gast.Store(),
                                    annotation=None,
                                    type_comment=None)
1004 1005 1006 1007 1008
            node.body[0:0] = self.tuple_to_stmts(origin_tuple_node, tuple_name)
        return node

    def tuple_to_stmts(self, node, tuple_name, idx=[]):
        if not isinstance(node, (gast.Tuple, gast.List)):
1009
            value_node_str = tuple_name
1010
            for i in idx:
1011 1012 1013 1014 1015 1016 1017
                value_node_str = value_node_str + "[{}]".format(i)

            node_str = ast_to_source_code(node).strip()
            assign_node_str = "{} = {}".format(node_str, value_node_str)
            assign_node = gast.parse(assign_node_str).body[0]
            return [assign_node]

1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045
        # isinstance(node, (gast.Tuple, gast.List))
        ret = []
        for i, element in enumerate(node.elts):
            ret += self.tuple_to_stmts(node.elts[i], tuple_name, idx + [i])
        return ret

    def is_for_iter(self, for_node):
        assert isinstance(for_node,
                          gast.For), "Input node is not gast.For node."
        if isinstance(for_node.iter, (gast.Name, gast.Attribute)):
            return True
        elif isinstance(for_node.iter, gast.Call) and isinstance(
                for_node.iter.func,
                gast.Attribute) and for_node.iter.func.attr == 'numpy':
            return True
        elif isinstance(for_node.iter, gast.Subscript):
            return True
        else:
            return False

    def is_for_enumerate_iter(self, for_node):
        assert isinstance(for_node,
                          gast.For), "Input node is not gast.For node."
        return isinstance(for_node.iter, gast.Call) and isinstance(
            for_node.iter.func,
            gast.Name) and for_node.iter.func.id == "enumerate"


1046
class ForNodeVisitor(object):
1047
    """
1048
    This class parses python for statement, get transformed 3 statement components of for node
1049 1050 1051 1052 1053 1054 1055 1056
    three key statements:
        1). init_stmts: list[node], prepare nodes of for loop, may not only one
        2). cond_stmt: node, condition node to judge whether continue loop
        3). body_stmts: list[node], updated loop body, sometimes we should change
            the original statement in body, not just append new statement

    In this process, the semantics of for does not change.

1057
    Now only can parse 3 type statements (Here var is VarBase(Tensor) or python variable):
1058 1059 1060
        1). for x in range(var[*]|var.numpy()[*])
        2). for x in var|var.numpy()
        3). for i, x enumerate(var|var.numpy())
1061 1062 1063 1064 1065
    """

    def __init__(self, for_node):
        assert isinstance(
            for_node, gast.For
1066
        ), "Input node for the initialization of ForNodeVisitor is not gast.For node."
1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079
        # 1. original for node
        self.node = for_node

        # 2. gast.For node main parts
        self.target = for_node.target
        # NOTE: type may be Node or list[Node]
        self.iter_args = for_node.iter if self.is_for_iter(
        ) else for_node.iter.args
        self.body = for_node.body

        # 3. key shared node or names
        # - x:
        #   - for x in range(***)
1080 1081
        #   - for x in var|var.numpy()
        #   - for i, x enumerate(var|var.numpy())
1082 1083 1084
        self.iter_var_name = self._get_iter_var_name()

        # - created index var to slice Variable: __for_loop_var_index_0
1085 1086
        #   - for x in var|var.numpy()
        #   - for i, x enumerate(var|var.numpy())
1087 1088
        self.iter_idx_name = unique_name.generate(FOR_ITER_INDEX_PREFIX)

1089
        # - created shape var to build loop condition: __for_loop_var_len_0
1090 1091 1092
        #   - for x in var|var.numpy()
        #   - for i, x enumerate(var|var.numpy())
        #   - for x in var
1093
        self.iter_var_len_name = unique_name.generate(FOR_ITER_VAR_LEN_PREFIX)
1094 1095 1096
        # - created zip to list var : __for_loop_iter_zip_0
        self.iter_zip_to_list_name = unique_name.generate(
            FOR_ITER_ZIP_TO_LIST_PREFIX)
1097

1098 1099 1100
        # - var.numpy()/var
        #   - for x in var|var.numpy()
        #   - for i, x enumerate(var|var.numpy())
1101 1102 1103
        self.iter_node = self._get_iter_node()

        # - enumeate i:
1104
        #   - for i, x enumerate(var|var.numpy())
1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118
        self.enum_idx_name = self._get_enum_idx_name()

        # - range/enumerate args length
        self.args_length = None

    def parse(self):
        self._args_check()
        if self.is_for_range_iter():
            return self._parse_for_range_stmts()
        elif self.is_for_iter():
            return self._parse_for_stmts()
        elif self.is_for_enumerate_iter():
            return self._parse_for_enumerate_stmts()
        else:
1119
            return None
1120 1121

    def is_for_range_iter(self):
1122 1123 1124
        return isinstance(self.node.iter, gast.Call) and isinstance(
            self.node.iter.func,
            gast.Name) and self.node.iter.func.id == "range"
1125 1126

    def is_for_iter(self):
1127 1128
        if isinstance(self.node.iter,
                      (gast.Name, gast.Attribute, gast.List, gast.Tuple)):
1129 1130 1131 1132 1133
            return True
        elif isinstance(self.node.iter, gast.Call) and isinstance(
                self.node.iter.func,
                gast.Attribute) and self.node.iter.func.attr == 'numpy':
            return True
1134 1135
        elif isinstance(self.node.iter, gast.Subscript):
            return True
1136 1137
        else:
            return False
1138 1139

    def is_for_enumerate_iter(self):
1140 1141 1142
        return isinstance(self.node.iter, gast.Call) and isinstance(
            self.node.iter.func,
            gast.Name) and self.node.iter.func.id == "enumerate"
1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168

    def _args_check(self):
        if self.is_for_range_iter():
            self.args_length = len(self.iter_args)
            assert self.args_length >= 1 and self.args_length <= 3, "range() function takes 1 to 3 arguments"
        elif self.is_for_enumerate_iter():
            self.args_length = len(self.iter_args)
            assert self.args_length >= 1 and self.args_length <= 2, "enumerate() function takes 1 to 2 arguments"
        else:
            self.args_length = None

    def _parse_for_range_stmts(self):
        init_stmts = []
        init_stmts.append(self._build_index_init_node())

        compare_node = self._build_compare_node()
        step_node = self._build_step_node()
        cond_stmt = self._build_cond_stmt(step_node, compare_node)

        body_stmts = self.body
        body_stmts.append(self._build_index_increase_node(step_node))

        return init_stmts, cond_stmt, body_stmts

    def _parse_for_stmts(self):
        init_stmts = []
1169
        init_stmts.extend(self._build_iter_node())
1170
        init_stmts.append(self._build_index_init_node())
1171
        init_stmts.append(self._build_var_len_assign_node())
1172 1173 1174 1175 1176 1177

        compare_node = self._build_compare_node()
        step_node = self._build_step_node()
        cond_stmt = self._build_cond_stmt(step_node, compare_node)

        body_stmts = self.body
1178 1179 1180 1181 1182

        # NOTE(liym27): Here add a gast.Assign, and the target of it is gast.Name.
        # In NameNodeReplaceTransformer, using gast.Name to replace gast.Name is safe.
        target_node, assign_node = self._build_assign_var_slice_node()
        body_stmts[0:0] = [assign_node]
1183 1184
        for body_node in body_stmts:
            NameNodeReplaceTransformer(body_node, self.iter_var_name,
1185
                                       target_node)
1186 1187 1188 1189 1190 1191
        body_stmts.append(self._build_index_increase_node(step_node))

        return init_stmts, cond_stmt, body_stmts

    def _parse_for_enumerate_stmts(self):
        init_stmts = []
1192
        init_stmts.extend(self._build_iter_node())
1193
        init_stmts.append(self._build_index_init_node())
1194
        init_stmts.append(self._build_var_len_assign_node())
1195 1196 1197 1198 1199 1200 1201
        init_stmts.append(self._build_enum_init_node())

        compare_node = self._build_compare_node()
        step_node = self._build_step_node()
        cond_stmt = self._build_cond_stmt(step_node, compare_node)

        body_stmts = self.body
1202 1203 1204

        target_node, assign_node = self._build_assign_var_slice_node()
        body_stmts[0:0] = [assign_node]
1205 1206
        for body_node in body_stmts:
            NameNodeReplaceTransformer(body_node, self.iter_var_name,
1207 1208
                                       target_node)

1209 1210 1211 1212 1213 1214 1215 1216
        body_stmts.append(self._build_index_increase_node(step_node))
        body_stmts.append(self._build_enum_increase_node())

        return init_stmts, cond_stmt, body_stmts

    def _build_index_init_node(self):
        if self.is_for_range_iter():
            if self.args_length == 1:
1217
                index_init_value_str = '0'
1218
            else:
1219 1220
                index_init_value_str = ast_to_source_code(
                    self.iter_args[0]).strip()
1221 1222

            index_init_var_name = self.iter_var_name
1223
        else:
1224 1225 1226 1227 1228 1229 1230 1231
            index_init_value_str = '0'
            index_init_var_name = self.iter_idx_name

        index_init_node_source_str = "{target} = {value}".format(
            target=index_init_var_name, value=index_init_value_str)

        index_init_node = gast.parse(index_init_node_source_str).body[0]

1232 1233
        return index_init_node

1234 1235 1236 1237 1238
    def _build_var_len_assign_node(self):
        # get the length of iterable variable
        if isinstance(self.iter_node, gast.Call) and isinstance(
                self.iter_node.func,
                gast.Attribute) and self.iter_node.func.attr == 'numpy':
1239 1240
            iter_var_name = ast_to_source_code(
                self.iter_node.func.value).strip()
1241
        else:
1242 1243
            iter_var_name = ast_to_source_code(self.iter_node).strip()

1244
        convert_len_node_source_str = '{} = _jst.Len({})'.format(
1245 1246 1247 1248 1249
            self.iter_var_len_name, iter_var_name)

        convert_len_node = gast.parse(convert_len_node_source_str).body[0]

        return convert_len_node
1250

1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270
    def _build_iter_node(self):
        """
        Process special cases for iter_node inclue:
          - Case 1 (for zip):
            
            - for i, val in enumerate(zip(x, y))  # original code:
            
            - __for_loop_iter_zip_0 = list(zip(x, y))
            - for i, val in enumerate(__for_loop_iter_zip_0)
        """
        new_nodes = []
        if isinstance(self.iter_node, gast.Call) and isinstance(
                self.iter_node.func, gast.Name):
            if self.iter_node.func.id == 'zip':
                iter_var_name = ast_to_source_code(self.iter_node).strip()
                zip_to_list_str = "{target} = list({value})".format(
                    target=self.iter_zip_to_list_name, value=iter_var_name)
                zip_to_list_node = gast.parse(zip_to_list_str).body[0]
                new_nodes.append(zip_to_list_node)

1271 1272 1273 1274
                self.iter_node = gast.Name(id=self.iter_zip_to_list_name,
                                           ctx=gast.Load(),
                                           annotation=None,
                                           type_comment=None)
1275 1276 1277

        return new_nodes

1278 1279
    def _build_enum_init_node(self):
        if self.is_for_enumerate_iter() and self.args_length != 1:
1280 1281 1282 1283 1284 1285 1286
            init_value_str = ast_to_source_code(self.iter_args[1]).strip()
        else:
            init_value_str = '0'

        enum_init_node_source_str = "{} = {}".format(self.enum_idx_name,
                                                     init_value_str)
        enum_init_node = gast.parse(enum_init_node_source_str).body[0]
1287 1288 1289 1290 1291 1292 1293
        return enum_init_node

    def _build_compare_node(self):
        if self.is_for_range_iter():
            compare_node = self.iter_args[
                0] if self.args_length == 1 else self.iter_args[1]
        else:
1294 1295 1296 1297
            compare_node = gast.Name(id=self.iter_var_len_name,
                                     ctx=gast.Load(),
                                     annotation=None,
                                     type_comment=None)
1298 1299 1300 1301 1302
        return compare_node

    def _build_step_node(self):
        if self.is_for_range_iter():
            step_node = self.iter_args[
1303 1304
                2] if self.args_length == 3 else gast.Constant(value=1,
                                                               kind=None)
1305 1306 1307 1308 1309
        else:
            step_node = gast.Constant(value=1, kind=None)
        return step_node

    def _build_cond_stmt(self, step_node, compare_node):
1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320
        if not isinstance(step_node, (gast.Constant, gast.UnaryOp)):
            raise NotImplementedError(
                "Dynamic-to-Static only supports the step value is a constant or negative constant in 'for-range' statements, "
                "such as '2', '-3'. But received: '{}'. Please fix code to be compatible with Dynamic-to-Static."
                .format(ast_to_source_code(step_node).strip()))

        if isinstance(step_node, gast.UnaryOp) or step_node.value < 0:
            # eg:
            # range(max, min, -2)
            # ->
            # i > min
1321 1322 1323 1324 1325 1326 1327 1328
            return gast.Compare(left=gast.Name(
                id=self.iter_var_name
                if self.is_for_range_iter() else self.iter_idx_name,
                ctx=gast.Load(),
                annotation=None,
                type_comment=None),
                                ops=[gast.Gt()],
                                comparators=[compare_node])
1329 1330 1331 1332 1333
        else:
            # eg:
            # range(min, max, 2)
            # ->
            # i < max
1334
            return gast.Compare(left=gast.Name(
1335 1336
                id=self.iter_var_name
                if self.is_for_range_iter() else self.iter_idx_name,
1337
                ctx=gast.Load(),
1338 1339
                annotation=None,
                type_comment=None),
1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351
                                ops=[gast.Lt()],
                                comparators=[compare_node])

    def _build_index_increase_node(self, step_node):
        return gast.AugAssign(target=gast.Name(
            id=self.iter_var_name
            if self.is_for_range_iter() else self.iter_idx_name,
            ctx=gast.Store(),
            annotation=None,
            type_comment=None),
                              op=gast.Add(),
                              value=step_node)
1352

1353
    def _build_assign_var_slice_node(self):
1354 1355 1356
        var_slice_str = "{}[{}]".format(
            ast_to_source_code(self.iter_node).strip(), self.iter_idx_name)
        var_slice_node = gast.parse(var_slice_str).body[0].value
1357 1358 1359 1360
        new_iter_var_name = unique_name.generate(FOR_ITER_VAR_NAME_PREFIX)
        target_node, assign_node = create_assign_node(new_iter_var_name,
                                                      var_slice_node)
        return target_node, assign_node
1361 1362

    def _build_enum_increase_node(self):
1363 1364 1365 1366 1367 1368
        return gast.AugAssign(target=gast.Name(id=self.enum_idx_name,
                                               ctx=gast.Store(),
                                               annotation=None,
                                               type_comment=None),
                              op=gast.Add(),
                              value=gast.Constant(value=1, kind=None))
1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389

    def _get_iter_var_name(self):
        if self.is_for_range_iter():
            return self.target.id
        elif self.is_for_iter():
            return self.target.id
        elif self.is_for_enumerate_iter():
            return self.target.elts[1].id
        return None

    def _get_iter_node(self):
        if self.is_for_iter():
            return self.iter_args
        elif self.is_for_enumerate_iter():
            return self.iter_args[0]
        return None

    def _get_enum_idx_name(self):
        if self.is_for_enumerate_iter():
            return self.target.elts[0].id
        return None
1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471


class SplitAssignTransformer(gast.NodeTransformer):
    """
    This class transforms sequence assignments and multi-target assignments to normal assignments.
    """

    def __init__(self, ast_node):
        assert isinstance(ast_node, gast.AST)
        self.ast_root = ast_node

    def transform(self):
        self.visit(self.ast_root)

    def visit_Assign(self, node):
        target_nodes = node.targets
        if len(target_nodes) == 1:
            node = self._parse_sequence_assign(node)
        else:
            node = self._parse_multi_target_assign(node)
        return node

    def _parse_sequence_assign(self, node):
        """
        a, b = c, d
        ->
        a = c
        b = d
        """
        assert isinstance(node, gast.Assign)

        target_nodes = node.targets
        value_node = node.value
        if not isinstance(target_nodes[0], (gast.List, gast.Tuple)):
            return node
        if not isinstance(value_node, (gast.List, gast.Tuple)):
            return node

        targets = node.targets[0].elts
        values = node.value.elts
        if len(targets) != len(values):
            return node

        new_nodes = []
        for target, value in zip(targets, values):
            assign_node = gast.Assign(targets=[target], value=value)
            new_nodes.append(assign_node)

        return new_nodes

    def _parse_multi_target_assign(self, node):
        """
         Example 1:
         a = b = c
         ->
         b = c
         a = b

         Example 2:
         a, b = c, d = x
         ->
         c,d = x
         a = c
         b = d
         """
        assert isinstance(node, gast.Assign)

        target_nodes = node.targets
        value_node = node.value
        new_nodes = []
        for target in reversed(target_nodes):
            assign_node = gast.Assign(targets=[target], value=value_node)
            # NOTE: Because assign_node can be sequence assign statement like `a,b = c,d`,
            # it's necessary to visit this new assign_node
            parsed_node = self.visit_Assign(assign_node)
            if not isinstance(parsed_node, list):
                parsed_node = [parsed_node]

            new_nodes.extend(parsed_node)
            value_node = target

        return new_nodes
1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487


# NOTE: inspect.unwrap() exits in PY3 but not in PY2.
def unwrap(func):
    """
    Returns the object wrapped by decorators.
    """

    def _is_wrapped(f):
        return hasattr(f, '__wrapped__')

    unwrapped_f = func
    while (_is_wrapped(unwrapped_f)):
        unwrapped_f = unwrapped_f.__wrapped__

    return unwrapped_f
1488 1489


C
Chen Weihang 已提交
1490
def input_specs_compatible(src_input_specs, desired_input_specs):
1491 1492 1493 1494
    """
    Returns True if the two input specs are compatible, otherwise False.

    args:
1495 1496 1497 1498
        src_input_spec (list or tuple[InputSpec et.al]): list/tuple of
            paddle.static.InputSpec or int/str et.al
        desired_input_specs (list or tuple[InputSpec et.al]): list/tuple of
            paddle.static.InputSpec or int/str et.al
1499 1500
    """
    len_specs = len(src_input_specs)
C
Chen Weihang 已提交
1501 1502
    if len_specs != len(desired_input_specs):
        # NOTE(chenweihang): if the input_spec of jit.save is a subset of
1503
        # input_spec of to_static, also compatible
C
Chen Weihang 已提交
1504 1505 1506 1507
        for spec in src_input_specs:
            if spec not in desired_input_specs:
                return False
    else:
1508 1509 1510 1511 1512 1513 1514 1515
        for (src_spec, desired_spec) in zip(src_input_specs,
                                            desired_input_specs):
            if isinstance(src_spec, paddle.static.InputSpec) or isinstance(
                    desired_spec, paddle.static.InputSpec):
                if not _compatible_tensor_spec(src_spec, desired_spec):
                    return False
            else:
                if not _compatible_non_tensor_spec(src_spec, desired_spec):
C
Chen Weihang 已提交
1516 1517
                    return False

1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544
    return True


def _compatible_tensor_spec(src_spec, desired_spec):
    """
    Check whether two tensor type spec is compatible.
    """
    for spec in [src_spec, desired_spec]:
        if not isinstance(spec, paddle.static.InputSpec):
            return False
    src_shape = src_spec.shape
    other_shape = desired_spec.shape
    len_shape = len(src_shape)
    if len_shape != len(other_shape):
        return False
    for j in range(len_shape):
        if src_shape[j] is None or src_shape[j] < 0:
            continue
        if other_shape[j] is None or other_shape[j] < 0:
            continue
        if src_shape[j] != other_shape[j]:
            return False

    src_dtype = convert_dtype(src_spec.dtype)
    other_dtype = convert_dtype(desired_spec.dtype)
    if src_dtype != other_dtype:
        return False
1545 1546

    return True
1547

1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568

def _compatible_non_tensor_spec(src_spec, desired_spec):
    """
    Check whether two non-tensor type spec is compatible.
    """

    def hash_value(spec):
        try:
            hash_val = make_hashable(spec)
        except:
            hash_val = None
        return hash_val

    src_hash_val = hash_value(src_spec)
    desired_hash_val = hash_value(desired_spec)

    if src_hash_val != desired_hash_val:
        return False
    else:
        return True

1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592

def slice_is_num(slice_node):
    # A slice_node.slice can be a:
    # (1) ast.Index, which is a simple number such as [1], [-2]
    # (2) ast.Slice, which is represented by bounds such as [2:-1]
    # (3) ast.Tuple, which includes the above two cases such as [2:-1, 1]
    # If slice node is case (1), return True, Otherwise, return False.
    #
    # NOTE: In (1) case, when gast>=0.4.0, gast.Index is not used, which is replaced
    # other gast node such as gast.Constant, gast.Name, gast.UnaryOp and so on.
    # Considering the compatibility of gast, here use ast note to check whether the
    # node is a num. For more details, please visit https://github.com/serge-sans-paille/gast

    assert isinstance(slice_node, gast.Subscript)
    slice_node_str = ast_to_source_code(slice_node).strip()
    ast_node = ast.parse(slice_node_str).body[0].value

    if isinstance(ast_node.slice, (ast.Tuple, ast.Slice)):
        return False

    if isinstance(ast_node.slice, ast.Index):
        return True

    return False
1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682


def create_get_args_node(names):
    """
    Create get_args function as follows:

        def get_args_0():
            nonlocal x, y
            return x, y
    """

    def empty_node():
        func_def = """
        def {func_name}():
            return
        """.format(func_name=unique_name.generate(GET_ARGS_FUNC_PREFIX))
        return gast.parse(textwrap.dedent(func_def)).body[0]

    assert isinstance(names, (list, tuple))
    if not names:
        return empty_node()

    mapped = list(filter(lambda n: '.' not in n, names))
    nonlocal_names = sorted(
        mapped,
        key=mapped.index)  # to keep the order, we can't use set() to unique
    template = """
    def {func_name}():
        nonlocal {nonlocal_vars}
        return {vars}
    """
    func_def = template.format(
        func_name=unique_name.generate(GET_ARGS_FUNC_PREFIX),
        nonlocal_vars=','.join(nonlocal_names),
        vars=",".join(names))
    return gast.parse(textwrap.dedent(func_def)).body[0]


GET_ARGS_FUNC_PREFIX = 'get_args'
SET_ARGS_FUNC_PREFIX = 'set_args'
ARGS_NAME = '__args'


def create_set_args_node(names):
    """
    Create set_args function as follows:

        def set_args_0(__args):
            nonlocal x, y
            x, y = __args
    """

    def empty_node():
        func_def = """
        def {func_name}({args}):
            pass
        """.format(func_name=unique_name.generate(SET_ARGS_FUNC_PREFIX),
                   args=ARGS_NAME)
        return gast.parse(textwrap.dedent(func_def)).body[0]

    assert isinstance(names, (list, tuple))
    if not names:
        return empty_node()

    mapped = list(filter(lambda n: '.' not in n, names))
    nonlocal_names = sorted(
        mapped,
        key=mapped.index)  # to keep the order, we can't use set() to unique
    template = """
    def {func_name}({args}):
        nonlocal {nonlocal_vars}
        {vars} = {args}
    """
    func_def = template.format(
        func_name=unique_name.generate(SET_ARGS_FUNC_PREFIX),
        args=ARGS_NAME,
        nonlocal_vars=','.join(nonlocal_names),
        vars=",".join(names))
    return gast.parse(textwrap.dedent(func_def)).body[0]


def create_nonlocal_stmt_node(names):
    assert isinstance(names, (list, tuple))

    mapped = list(filter(lambda n: '.' not in n, names))
    names = sorted(
        mapped,
        key=mapped.index)  # to keep the order, we can't use set() to unique
    func_code = "nonlocal {}".format(','.join(names))
    return gast.parse(func_code).body[0]