logsumexp_op.h 6.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

17 18 19
#include <algorithm>
#include <vector>
#include "paddle/fluid/operators/reduce_ops/reduce_op_function.h"
20 21 22 23

namespace paddle {
namespace operators {

24 25 26 27 28 29 30
#define HANDLE_DIM(NDIM, RDIM)                                            \
  if (ndim == NDIM && rdim == RDIM) {                                     \
    ReduceFunctor<DeviceContext, OutT, NDIM, RDIM, LogsumexpFunctor>(     \
        context.template device_context<DeviceContext>(), *input, output, \
        axis, keepdim);                                                   \
  }

31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
struct LogsumexpFunctor {
  template <typename DeviceContext, typename X, typename Y, typename Dim>
  void operator()(const DeviceContext& place, X* x, Y* y, const Dim& dim) {
    auto x_dim = x->dimensions();
    auto t_dim = x_dim;
    for (int i = 0; i < static_cast<int>(dim.size()); i++) {
      t_dim[dim[i]] = 1;
    }

    auto r_dim = x_dim;
    for (int i = 0; i < static_cast<int>(r_dim.size()); i++) {
      r_dim[i] = 1;
    }
    for (int i = 0; i < static_cast<int>(dim.size()); i++) {
      r_dim[dim[i]] = x_dim[dim[i]];
    }

    auto y_dim = y->dimensions();
    auto x_max = x->maximum(dim);
    y->device(place) =
        (x_max +
         (*x - x_max.reshape(t_dim).broadcast(r_dim)).exp().sum(dim).log())
            .reshape(y_dim);
  }
};

struct LogsumexpGradFunctor {
  template <typename DeviceContext, typename X, typename Y, typename DX,
            typename DY, typename Dim>
  void operator()(const DeviceContext& place, X* x, Y* y, DX* dx, DY* dy,
                  const Dim& dim, int size) {
    dx->device(place) = dy->broadcast(dim) * (*x - y->broadcast(dim)).exp();
  }
};

66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
template <typename DeviceContext, typename OutT>
class LogsumexpKernel : public framework::OpKernel<OutT> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto* input = context.Input<Tensor>("X");
    auto* output = context.Output<Tensor>("Out");
    output->mutable_data<OutT>(context.GetPlace());

    auto axis = context.Attr<std::vector<int>>("axis");
    auto keepdim = context.Attr<bool>("keepdim");
    auto reduce_all = context.Attr<bool>("reduce_all");

    const auto& input_dim_size = input->dims().size();
    // The dims has full dim, set the reduce_all is True
    reduce_all |= (static_cast<const int>(axis.size()) == input_dim_size);

    if (reduce_all) {
      // Flatten and reduce 1-D tensor
      auto x = EigenVector<OutT>::Flatten(*input);
      auto out = EigenScalar<OutT>::From(*output);
      auto& place =
          *context.template device_context<DeviceContext>().eigen_device();
      auto reduce_dim = Eigen::array<int, 1>({{0}});
      LogsumexpFunctor()(place, &x, &out, reduce_dim);
    } else {
      int ndim = input_dim_size;
      int rdim = axis.size();
      // comments for accelerating compiling temporarily.
      // HANDLE_DIM(6, 5);
      // HANDLE_DIM(6, 4);
      // HANDLE_DIM(6, 3);
      // HANDLE_DIM(6, 2);
      // HANDLE_DIM(6, 1);
      // HANDLE_DIM(5, 4);
      // HANDLE_DIM(5, 3);
      // HANDLE_DIM(5, 2);
      // HANDLE_DIM(5, 1);
      HANDLE_DIM(4, 3);
      HANDLE_DIM(4, 2);
      HANDLE_DIM(4, 1);
      HANDLE_DIM(3, 2);
      HANDLE_DIM(3, 1);
      HANDLE_DIM(2, 1);
    }
  }
};

template <typename DeviceContext, typename T>
class LogsumexpGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto* input = context.Input<Tensor>("X");
    auto* output = context.Input<Tensor>("Out");
    auto* output_grad = context.Input<Tensor>(framework::GradVarName("Out"));
    auto* input_grad = context.Output<Tensor>(framework::GradVarName("X"));
    input_grad->mutable_data<T>(context.GetPlace());

    auto axis = context.Attr<std::vector<int>>("axis");
    auto reduce_all = context.Attr<bool>("reduce_all");
    const auto input_dim_size = context.Input<Tensor>("X")->dims().size();
    reduce_all |= (static_cast<const int>(axis.size()) == input_dim_size);

    if (reduce_all) {
      auto x = EigenVector<T>::Flatten(*input);
      auto y = EigenVector<T>::Flatten(*output);
      auto dy = EigenVector<T>::Flatten(*output_grad);
      auto dx = EigenVector<T>::Flatten(*input_grad);
      auto& place =
          *context.template device_context<DeviceContext>().eigen_device();
      auto broadcast_dim =
          Eigen::array<int, 1>({{static_cast<int>(input->numel())}});
      LogsumexpGradFunctor()(place, &x, &y, &dx, &dy, broadcast_dim,
                             broadcast_dim[0]);
    } else {
      int rank = input->dims().size();
      switch (rank) {
        case 1:
          ReduceGradFunctor<DeviceContext, T, 1, LogsumexpGradFunctor>(
              context.template device_context<DeviceContext>(), *input, *output,
              *output_grad, input_grad, axis);
          break;
        case 2:
          ReduceGradFunctor<DeviceContext, T, 2, LogsumexpGradFunctor>(
              context.template device_context<DeviceContext>(), *input, *output,
              *output_grad, input_grad, axis);
          break;
        case 3:
          ReduceGradFunctor<DeviceContext, T, 3, LogsumexpGradFunctor>(
              context.template device_context<DeviceContext>(), *input, *output,
              *output_grad, input_grad, axis);
          break;
        case 4:
          ReduceGradFunctor<DeviceContext, T, 4, LogsumexpGradFunctor>(
              context.template device_context<DeviceContext>(), *input, *output,
              *output_grad, input_grad, axis);
          break;
      }
    }
  }
};

167 168
}  // namespace operators
}  // namespace paddle