elementwise_sub_op_npu.cc 5.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <memory>
#include <string>

#include "paddle/fluid/operators/elementwise/elementwise_sub_op.h"
#include "paddle/fluid/operators/npu_op_runner.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

26
template <typename T>
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
class ElementwiseSubNPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* x = ctx.Input<Tensor>("X");
    auto* y = ctx.Input<Tensor>("Y");
    auto* out = ctx.Output<Tensor>("Out");

    out->mutable_data<T>(ctx.GetPlace());

    auto runner = NpuOpRunner("Sub", {*x, *y}, {*out}, {});

    auto stream =
        ctx.template device_context<paddle::platform::NPUDeviceContext>()
            .stream();
    runner.Run(stream);
  }
};

45
template <typename T>
46 47 48 49 50 51 52
class ElementwiseSubGradNPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
    auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto* dy = ctx.Output<Tensor>(framework::GradVarName("Y"));

53 54 55
    auto stream =
        ctx.template device_context<paddle::platform::NPUDeviceContext>()
            .stream();
56 57 58 59 60 61 62 63 64 65 66 67 68

    // NOTE(zhiqiu): It seems Ascend Sub follow the broadcast sematics with
    // default axis=-1?
    // So, the sub_grad should do reduce if needed.
    // For example, the shape of each variable in elementwise_sub:
    // x, dx: [2, 3, 5]
    // y, dy: [1, 5]
    // out, dout: [2, 3, 5]
    // Then, out = x - y  =>  dx = dout, dy = -dout
    // And, the shape of dy can be computed by two stages reduce,
    // 1. [2, 3, 5] => [3, 5], ReduceSumD on axis = 0, keep_dims = false.
    // 2. [3, 5] => [1, 5], ReduceSumD on axis = 0, keep_dims = true.

69 70 71 72 73 74 75
    if (dx) {
      dx->mutable_data<T>(ctx.GetPlace());
      // For dx
      // stage 1
      auto reduce_ndim = dout->dims().size() - dx->dims().size();
      std::vector<int> axes;
      for (auto i = 0; i < reduce_ndim; ++i) {
76 77
        axes.push_back(i);
      }
78 79 80 81 82 83 84 85 86 87 88 89 90 91
      Tensor* tmp_dout = const_cast<Tensor*>(dout);
      Tensor reduced_dout(dx->type());
      if (axes.size() != 0) {
        std::vector<int64_t> reduced_dout_dims;
        for (auto i = reduce_ndim; i < dout->dims().size(); ++i) {
          reduced_dout_dims.push_back(dout->dims()[i]);
        }
        reduced_dout.Resize(framework::make_ddim(reduced_dout_dims));
        reduced_dout.mutable_data<T>(ctx.GetPlace());
        auto runner = NpuOpRunner("ReduceSumD", {*dout}, {reduced_dout},
                                  {{"axes", axes}, {"keep_dims", false}});
        runner.Run(stream);
        tmp_dout = &reduced_dout;
      }
92

93 94 95 96 97 98 99 100 101 102 103 104
      // stage 2
      axes.clear();
      for (auto i = 0; i < dx->dims().size(); ++i) {
        if (dx->dims()[i] == 1) {
          axes.push_back(i);
        }
      }
      if (axes.size() != 0) {
        auto runner = NpuOpRunner("ReduceSumD", {*tmp_dout}, {*dx},
                                  {{"axes", axes}, {"keep_dims", true}});
        runner.Run(stream);
      } else {
105 106 107
        framework::TensorCopy(
            *tmp_dout, ctx.GetPlace(),
            ctx.template device_context<platform::DeviceContext>(), dx);
108 109
      }
    }
110 111 112 113 114 115 116
    if (dy) {
      dy->mutable_data<T>(ctx.GetPlace());
      // For dy
      // stage 1
      auto reduce_ndim = dout->dims().size() - dy->dims().size();
      std::vector<int> axes;
      for (auto i = 0; i < reduce_ndim; ++i) {
117 118
        axes.push_back(i);
      }
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
      Tensor* tmp_dout = const_cast<Tensor*>(dout);
      Tensor reduced_dy(dy->type());
      Tensor reduced_dout(dy->type());

      if (axes.size() != 0) {
        std::vector<int64_t> reduced_dout_dims;
        for (auto i = reduce_ndim; i < dout->dims().size(); ++i) {
          reduced_dout_dims.push_back(dout->dims()[i]);
        }
        reduced_dout.Resize(framework::make_ddim(reduced_dout_dims));
        reduced_dout.mutable_data<T>(ctx.GetPlace());
        auto runner = NpuOpRunner("ReduceSumD", {*dout}, {reduced_dout},
                                  {{"axes", axes}, {"keep_dims", false}});
        runner.Run(stream);
        tmp_dout = &reduced_dout;
      }

      // stage 2
      axes.clear();
      Tensor* tmp_dy = tmp_dout;
      for (auto i = 0; i < dy->dims().size(); ++i) {
        if (dy->dims()[i] == 1) {
          axes.push_back(i);
        }
      }
      if (axes.size() != 0) {
        reduced_dy.Resize(dy->dims());
        reduced_dy.mutable_data<T>(ctx.GetPlace());
        auto runner = NpuOpRunner("ReduceSumD", {*tmp_dout}, {reduced_dy},
                                  {{"axes", axes}, {"keep_dims", true}});
        runner.Run(stream);
        tmp_dy = &reduced_dy;
      }

      // stage 3, negative
      auto runner = NpuOpRunner("Neg", {*tmp_dy}, {*dy}, {});
155 156 157 158 159 160 161 162 163
      runner.Run(stream);
    }
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
164 165 166 167
namespace plat = paddle::platform;

REGISTER_OP_NPU_KERNEL(elementwise_sub, ops::ElementwiseSubNPUKernel<float>,
                       ops::ElementwiseSubNPUKernel<plat::float16>);
168

169 170 171
REGISTER_OP_NPU_KERNEL(elementwise_sub_grad,
                       ops::ElementwiseSubGradNPUKernel<float>,
                       ops::ElementwiseSubGradNPUKernel<plat::float16>);