test_dist_hapi_model.py 4.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest
import os
import time
import copy
import subprocess
import paddle.fluid as fluid

from paddle.distributed.utils import find_free_ports, watch_local_trainers, get_cluster, TrainerProc


def get_cluster_from_args(selected_gpus):
    cluster_node_ips = '127.0.0.1'
    node_ip = '127.0.0.1'

    node_ips = [x.strip() for x in cluster_node_ips.split(',')]

    node_ips.index(node_ip)

    free_ports = None

    free_ports = find_free_ports(len(selected_gpus))
    if free_ports is not None:
        free_ports = list(free_ports)
40 41 42 43 44

    trainer_endpoints = []
    for ip in node_ips:
        trainer_endpoints.append(["%s:%d" % (ip, port) for port in free_ports])
    return get_cluster(node_ips, node_ip, trainer_endpoints, selected_gpus)
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131


def get_gpus(selected_gpus):
    selected_gpus = [x.strip() for x in selected_gpus.split(',')]
    return selected_gpus


def start_local_trainers(cluster,
                         pod,
                         training_script,
                         training_script_args,
                         log_dir=None):
    current_env = copy.copy(os.environ.copy())
    #paddle broadcast ncclUniqueId use socket, and
    #proxy maybe make trainers unreachable, so delete them.
    #if we set them to "", grpc will log error message "bad uri"
    #so just delete them.
    current_env.pop("http_proxy", None)
    current_env.pop("https_proxy", None)

    procs = []
    for t in pod.trainers:
        proc_env = {
            "FLAGS_selected_gpus": "%s" % ",".join([str(g) for g in t.gpus]),
            "PADDLE_TRAINER_ID": "%d" % t.rank,
            "PADDLE_CURRENT_ENDPOINT": "%s" % t.endpoint,
            "PADDLE_TRAINERS_NUM": "%d" % cluster.trainers_nranks(),
            "PADDLE_TRAINER_ENDPOINTS": ",".join(cluster.trainers_endpoints())
        }

        current_env.update(proc_env)

        print("trainer proc env:{}".format(current_env))

        if os.getenv('WITH_COVERAGE', 'OFF') == 'ON':
            cmd = "python -m coverage run --branch -p " + training_script
        else:
            cmd = "python -u " + training_script

        print("start trainer proc:{} env:{}".format(cmd, proc_env))

        fn = None

        proc = subprocess.Popen(cmd.split(" "), env=current_env)

        tp = TrainerProc()
        tp.proc = proc
        tp.rank = t.rank
        tp.log_fn = fn
        tp.cmd = cmd

        procs.append(tp)

    return procs


class TestMultipleGpus(unittest.TestCase):
    def run_mnist_2gpu(self, target_file_name):
        if fluid.core.get_cuda_device_count() == 0:
            return

        selected_gpus = get_gpus('0,1')
        cluster = None
        pod = None

        cluster, pod = get_cluster_from_args(selected_gpus)

        procs = start_local_trainers(
            cluster,
            pod,
            training_script=target_file_name,
            training_script_args=[])

        while True:
            alive = watch_local_trainers(procs, cluster.trainers_nranks())

            if not alive:
                print("Local procs complete, POD info:{}".format(pod))
                break
            time.sleep(3)

    def test_hapi_multiple_gpus_static(self):
        self.run_mnist_2gpu('dist_hapi_mnist_static.py')

    def test_hapi_multiple_gpus_dynamic(self):
        self.run_mnist_2gpu('dist_hapi_mnist_dynamic.py')

J
Jiaqi Liu 已提交
132 133 134
    def test_hapi_amp_static(self):
        self.run_mnist_2gpu('dist_hapi_pure_fp16_static.py')

135 136 137

if __name__ == "__main__":
    unittest.main()