gaussian_random_op.cc 3.1 KB
Newer Older
D
dongzhihong 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

15
#include <random>
D
dongzhihong 已提交
16 17 18 19
#include "paddle/framework/op_registry.h"

namespace paddle {
namespace operators {
D
dongzhihong 已提交
20

D
dongzhihong 已提交
21
template <typename T>
22
class GaussianRandomKernel : public framework::OpKernel {
D
dongzhihong 已提交
23
 public:
D
dongzhihong 已提交
24
  void Compute(const framework::ExecutionContext& context) const override {
D
dongzhihong 已提交
25 26
    float mean = context.op_.GetAttr<float>("mean");
    float std = context.op_.GetAttr<float>("std");
27 28 29 30 31 32 33 34 35 36
    auto* tensor = context.Output<framework::Tensor>(0);
    T* data = tensor->mutable_data<T>(context.GetPlace());

    // TODO(dzh): attribute does not support unsigned int.
    // And we need a global random seed configuration.
    int seed = context.op_.GetAttr<int>("seed");
    if (seed == 0) {
      seed = std::random_device()();
    }
    std::mt19937 g(seed);
D
dongzhihong 已提交
37
    std::normal_distribution<T> distribution(mean, std);
D
dongzhihong 已提交
38 39
    ssize_t size = framework::product(tensor->dims());
    for (int i = 0; i < size; ++i) {
40
      data[i] = distribution(g);
D
dongzhihong 已提交
41 42 43 44 45
    }
  }
};

class GaussianRandomOp : public framework::OperatorWithKernel {
Y
Yu Yang 已提交
46 47
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
48

D
dongzhihong 已提交
49
 protected:
50 51 52 53 54
  void InferShape(const framework::InferShapeContext& context) const override {
    auto* tensor = context.Output<framework::Tensor>(0);
    auto dims = GetAttr<std::vector<int>>("dims");
    PADDLE_ENFORCE(dims.size() > 0UL,
                   "dims can be one int or array. dims must be set.");
D
dongzhihong 已提交
55
    tensor->Resize(framework::make_ddim(dims));
D
dongzhihong 已提交
56 57 58
  }
};

D
dongzhihong 已提交
59
class GaussianRandomOpMaker : public framework::OpProtoAndCheckerMaker {
D
dongzhihong 已提交
60
 public:
D
dongzhihong 已提交
61 62
  GaussianRandomOpMaker(framework::OpProto* proto,
                        framework::OpAttrChecker* op_checker)
D
dongzhihong 已提交
63 64 65
      : framework::OpProtoAndCheckerMaker(proto, op_checker) {
    AddOutput("Out", "output matrix of random op");
    AddComment(R"DOC(
66 67
GaussianRandom operator.
Use to initialize tensor with gaussian random generator.
D
dongzhihong 已提交
68
)DOC");
69 70 71 72 73 74 75 76

    AddAttr<std::vector<int>>("dims", "The dimension of random tensor.");
    AddAttr<float>("mean", "mean value of random.").SetDefault(.0f);
    AddAttr<float>("std", "minimum value of random value.").SetDefault(1.0f);
    AddAttr<int>("seed",
                 "Random seed of generator."
                 "0 means use system wide seed")
        .SetDefault(0);
D
dongzhihong 已提交
77 78 79 80 81 82
  }
};

}  // namespace operators
}  // namespace paddle

83
namespace ops = paddle::operators;
F
fengjiayi 已提交
84 85
REGISTER_OP_WITHOUT_GRADIENT(gaussian_random, ops::GaussianRandomOp,
                             ops::GaussianRandomOpMaker);
86
REGISTER_OP_CPU_KERNEL(gaussian_random, ops::GaussianRandomKernel<float>);