shared_gru.py 1.0 KB
Newer Older
W
wangyang59 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
from paddle.trainer_config_helpers import *

settings(learning_rate=1e-4, batch_size=1000)

data_1 = data_layer(name='data_a', size=100)
data_2 = data_layer(name='data_b', size=100)

mixed_param = ParamAttr(name='mixed_param')

gru_param = ParamAttr(name='gru_param')
gru_bias = ParamAttr(name='gru_bias', initial_mean=0., initial_std=0.)

gru1 = simple_gru(
    input=data_1,
    size=200,
    mixed_param_attr=mixed_param,
    mixed_bias_param_attr=False,
    gru_bias_attr=gru_bias,
    gru_param_attr=gru_param)

gru2 = simple_gru(
    input=data_2,
    size=200,
    mixed_param_attr=mixed_param,
    mixed_bias_param_attr=False,
    gru_bias_attr=gru_bias,
    gru_param_attr=gru_param)

softmax_param = ParamAttr(name='softmax_param')

predict = fc_layer(
    input=[last_seq(input=gru1), last_seq(input=gru2)],
    size=10,
    param_attr=[softmax_param, softmax_param],
    bias_attr=False,
    act=SoftmaxActivation())
outputs(
    classification_cost(
        input=predict, label=data_layer(
            name='label', size=10)))