vgg16.py 8.9 KB
Newer Older
T
typhoonzero 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
"""VGG16 benchmark in Fluid"""
from __future__ import print_function

import sys
import time
import numpy as np
import paddle.v2 as paddle
import paddle.v2.fluid as fluid
import paddle.v2.fluid.core as core
import argparse
import functools
import os

def str2bool(v):
    if v.lower() in ('yes', 'true', 't', 'y', '1'):
        return True
    elif v.lower() in ('no', 'false', 'f', 'n', '0'):
        return False
    else:
        raise argparse.ArgumentTypeError('Boolean value expected.')

parser = argparse.ArgumentParser(description=__doc__)
parser.add_argument(
    '--batch_size', type=int, default=128, help="Batch size for training.")
parser.add_argument(
    '--learning_rate',
    type=float,
    default=1e-3,
    help="Learning rate for training.")
parser.add_argument('--num_passes', type=int, default=50, help="No. of passes.")
parser.add_argument(
    '--device',
    type=str,
    default='CPU',
    choices=['CPU', 'GPU'],
    help="The device type.")
parser.add_argument(
    '--data_format',
    type=str,
    default='NCHW',
    choices=['NCHW', 'NHWC'],
    help='The data order, now only support NCHW.')
parser.add_argument(
    '--data_set',
    type=str,
    default='cifar10',
    choices=['cifar10', 'flowers'],
    help='Optional dataset for benchmark.')
parser.add_argument(
    '--local',
    type=str2bool,
    default=True,
    help='Whether to run as local mode.')
args = parser.parse_args()


def vgg16_bn_drop(input):
    def conv_block(input, num_filter, groups, dropouts):
        return fluid.nets.img_conv_group(
            input=input,
            pool_size=2,
            pool_stride=2,
            conv_num_filter=[num_filter] * groups,
            conv_filter_size=3,
            conv_act='relu',
            conv_with_batchnorm=True,
            conv_batchnorm_drop_rate=dropouts,
            pool_type='max')

    conv1 = conv_block(input, 64, 2, [0.3, 0])
    conv2 = conv_block(conv1, 128, 2, [0.4, 0])
    conv3 = conv_block(conv2, 256, 3, [0.4, 0.4, 0])
    conv4 = conv_block(conv3, 512, 3, [0.4, 0.4, 0])
    conv5 = conv_block(conv4, 512, 3, [0.4, 0.4, 0])

    drop = fluid.layers.dropout(x=conv5, dropout_prob=0.5)
    fc1 = fluid.layers.fc(input=drop, size=512, act=None)
    bn = fluid.layers.batch_norm(input=fc1, act='relu')
    drop2 = fluid.layers.dropout(x=bn, dropout_prob=0.5)
    fc2 = fluid.layers.fc(input=drop2, size=512, act=None)
    return fc2


def main():
    if args.data_set == "cifar10":
        classdim = 10
        if args.data_format == 'NCHW':
            data_shape = [3, 32, 32]
        else:
            data_shape = [32, 32, 3]
    else:
        classdim = 102
        if args.data_format == 'NCHW':
            data_shape = [3, 224, 224]
        else:
            data_shape = [224, 224, 3]

    # Input data
    images = fluid.layers.data(name='pixel', shape=data_shape, dtype='float32')
    label = fluid.layers.data(name='label', shape=[1], dtype='int64')

    # Train program
    net = vgg16_bn_drop(images)
    predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
    cost = fluid.layers.cross_entropy(input=predict, label=label)
    avg_cost = fluid.layers.mean(x=cost)

    # Evaluator
    accuracy = fluid.evaluator.Accuracy(input=predict, label=label)

    # inference program
    inference_program = fluid.default_main_program().clone()
    with fluid.program_guard(inference_program):
        test_target = accuracy.metrics + accuracy.states
        inference_program = fluid.io.get_inference_program(test_target)

    # Optimization
    optimizer = fluid.optimizer.Adam(learning_rate=args.learning_rate)
    optimize_ops, params_grads = optimizer.minimize(avg_cost)

    # Initialize executor
    place = core.CPUPlace() if args.device == 'CPU' else core.CUDAPlace(0)
    exe = fluid.Executor(place)


    # test
    def test(exe):
        accuracy.reset(exe)
        for batch_id, data in enumerate(test_reader()):
            img_data = np.array(map(lambda x: x[0].reshape(data_shape),
                                    data)).astype("float32")
            y_data = np.array(map(lambda x: x[1], data)).astype("int64")
            y_data = y_data.reshape([-1, 1])

            exe.run(inference_program,
                    feed={"pixel": img_data,
                          "label": y_data})

        return accuracy.eval(exe)

    def train_loop(exe, trainer_prog):
        iters = 0
T
typhoonzero 已提交
143
        ts = time.time()
T
typhoonzero 已提交
144 145 146 147 148 149
        for pass_id in range(args.num_passes):
            # train
            start_time = time.time()
            num_samples = 0
            accuracy.reset(exe)
            for batch_id, data in enumerate(train_reader()):
T
typhoonzero 已提交
150
                ts = time.time()
T
typhoonzero 已提交
151 152 153 154 155 156 157 158 159 160 161 162
                img_data = np.array(map(lambda x: x[0].reshape(data_shape),
                                        data)).astype("float32")
                y_data = np.array(map(lambda x: x[1], data)).astype("int64")
                y_data = y_data.reshape([-1, 1])

                loss, acc = exe.run(trainer_prog,
                                    feed={"pixel": img_data,
                                        "label": y_data},
                                    fetch_list=[avg_cost] + accuracy.metrics)
                iters += 1
                num_samples += len(data)
                print(
T
typhoonzero 已提交
163 164
                    "Pass = %d, Iters = %d, Loss = %f, Accuracy = %f, spent %f" %
                    (pass_id, iters, loss, acc, time.time() - ts)
T
typhoonzero 已提交
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
                )  # The accuracy is the accumulation of batches, but not the current batch.

            pass_elapsed = time.time() - start_time
            pass_train_acc = accuracy.eval(exe)
            pass_test_acc = test(exe)
            print(
                "Pass = %d, Training performance = %f imgs/s, Train accuracy = %f, Test accuracy = %f\n"
                % (pass_id, num_samples / pass_elapsed, pass_train_acc,
                pass_test_acc))

    if args.local:
        # Parameter initialization
        exe.run(fluid.default_startup_program())

        # data reader
        train_reader = paddle.batch(
            paddle.reader.shuffle(
                paddle.dataset.cifar.train10()
                if args.data_set == 'cifar10' else paddle.dataset.flowers.train(),
                buf_size=5120),
            batch_size=args.batch_size)
        test_reader = paddle.batch(
            paddle.dataset.cifar.test10()
            if args.data_set == 'cifar10' else paddle.dataset.flowers.test(),
            batch_size=args.batch_size)
        train_loop(exe, fluid.default_main_program())
    else:
        pserver_ips = os.getenv("PADDLE_INIT_PSERVERS")  # all pserver endpoints
        eplist = []
        for ip in pserver_ips.split(","):
            eplist.append(':'.join([ip, "6174"]))
        pserver_endpoints = ",".join(eplist)
        print("pserver endpoints: ", pserver_endpoints)
        trainers = int(os.getenv("TRAINERS"))  # total trainer count
        current_endpoint = os.getenv("POD_IP") + ":6174"  # current pserver endpoint
        training_role = os.getenv("TRAINING_ROLE",
                                "TRAINER")  # get the training role: trainer/pserver
        t = fluid.DistributeTranspiler()
        t.transpile(
            optimize_ops, params_grads, pservers=pserver_endpoints, trainers=trainers)

        if training_role == "PSERVER":
            if not current_endpoint:
                print("need env SERVER_ENDPOINT")
                exit(1)
            pserver_prog = t.get_pserver_program(current_endpoint)
            pserver_startup = t.get_startup_program(current_endpoint, pserver_prog)
            print("starting server side startup")
            exe.run(pserver_startup)
            print("starting parameter server...")
            exe.run(pserver_prog)
        elif training_role == "TRAINER":
            # Parameter initialization
            exe.run(fluid.default_startup_program())

            # data reader
            train_reader = paddle.batch(
                paddle.reader.shuffle(
                    paddle.dataset.cifar.train10()
                    if args.data_set == 'cifar10' else paddle.dataset.flowers.train(),
                    buf_size=5120),
                batch_size=args.batch_size)
            test_reader = paddle.batch(
                paddle.dataset.cifar.test10()
                if args.data_set == 'cifar10' else paddle.dataset.flowers.test(),
                batch_size=args.batch_size)

            trainer_prog = t.get_trainer_program()
            feeder = fluid.DataFeeder(feed_list=[images, label], place=place)
            # TODO(typhoonzero): change trainer startup program to fetch parameters from pserver
            exe.run(fluid.default_startup_program())
            train_loop(exe, trainer_prog)
        else:
            print("environment var TRAINER_ROLE should be TRAINER os PSERVER")


def print_arguments():
    print('-----------  Configuration Arguments -----------')
    for arg, value in sorted(vars(args).iteritems()):
        print('%s: %s' % (arg, value))
    print('------------------------------------------------')


if __name__ == "__main__":
    print_arguments()
    main()