ext_tensor.cc 14.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "paddle/fluid/extension/include/ext_tensor.h"
16

17
#include <utility>
18

19 20 21
#include "paddle/fluid/framework/custom_tensor_utils.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/memory/memcpy.h"
22 23
#include "paddle/fluid/platform/complex128.h"
#include "paddle/fluid/platform/complex64.h"
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/transform.h"

namespace paddle {

template <typename InType, typename OutType>
struct CastDataTypeFunctor {
  HOSTDEVICE inline OutType operator()(InType in) const {
    return static_cast<OutType>(in);
  }
};

template <typename InType>
struct CastDataType {
  CastDataType(const framework::Tensor &in, framework::Tensor *out,
               const platform::DeviceContext *ctx)
      : in_(in), out_(out), ctx_(ctx) {}
  const framework::Tensor in_;
  framework::Tensor *out_;
  const platform::DeviceContext *ctx_;

  template <typename OutType>
  void apply() {
    auto *in_begin = in_.data<InType>();
    auto *in_end = in_begin + in_.numel();
    auto *out_begin = out_->mutable_data<OutType>(in_.place());

    if (platform::is_cpu_place(in_.place())) {
      platform::Transform<platform::CPUDeviceContext> trans;
      auto *context = static_cast<const platform::CPUDeviceContext *>(ctx_);
      trans(*context, in_begin, in_end, out_begin,
            CastDataTypeFunctor<InType, OutType>());
#ifdef __NVCC__
    } else if (platform::is_gpu_place(in_.place())) {
      platform::Transform<platform::CUDADeviceContext> trans;
      auto *context = static_cast<const platform::CUDADeviceContext *>(ctx_);
      trans(*context, in_begin, in_end, out_begin,
            CastDataTypeFunctor<InType, OutType>());
      context->Wait();
#endif
    } else {
      PADDLE_THROW(platform::errors::Unimplemented(
          "Place type is not supported when casting data type."));
    }
  }
};
template <typename T>
void GpuCopy(T *src, T *dst, PlaceType src_plc, PlaceType dst_plc,
             int64_t ele_size) {
#ifdef PADDLE_WITH_CUDA
  platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
  int device_num = paddle::platform::GetCurrentDeviceId();
  platform::CUDAPlace gpu_place(device_num);
  auto *dev_ctx =
      static_cast<const platform::CUDADeviceContext *>(pool.Get(gpu_place));
  if ((src_plc == PlaceType::kGPU) && (dst_plc == PlaceType::kCPU)) {
    memory::Copy(platform::CPUPlace(), static_cast<void *>(dst), gpu_place, src,
                 ele_size, dev_ctx->stream());
  } else if ((src_plc == PlaceType::kGPU) && (dst_plc == PlaceType::kGPU)) {
    memory::Copy(gpu_place, static_cast<void *>(dst), gpu_place, src, ele_size,
                 dev_ctx->stream());
  } else if ((src_plc == PlaceType::kCPU) && (dst_plc == PlaceType::kGPU)) {
    memory::Copy(gpu_place, static_cast<void *>(dst), platform::CPUPlace(), src,
                 ele_size, dev_ctx->stream());
  } else {
    PADDLE_THROW(platform::errors::Unavailable(
        "Only GPU related Copy can reach this func."));
  }
  cudaStreamSynchronize(dev_ctx->stream());
#endif
}

#define GET_CASTED_TENSOR                               \
  if (!tensor_) {                                       \
    tensor_ = std::make_shared<framework::LoDTensor>(); \
  }                                                     \
  auto *tensor = static_cast<framework::LoDTensor *>(tensor_.get());

C
Chen Weihang 已提交
102
void Tensor::reshape(const std::vector<int64_t> &shape) {
103 104 105 106 107
  GET_CASTED_TENSOR
  tensor->Resize(framework::make_ddim(shape));
}

Tensor::Tensor(const PlaceType &place)
108 109 110
    : tensor_(std::make_shared<framework::LoDTensor>()),
      place_(place),
      stream_(StreamWrapper()) {}
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
template <typename T>
T *Tensor::mutable_data(const PlaceType &place) {
  place_ = place;
  return mutable_data<T>();
}

template <typename T>
T *Tensor::mutable_data() {
  GET_CASTED_TENSOR
  PADDLE_ENFORCE_GT(
      tensor->numel(), 0,
      platform::errors::PreconditionNotMet(
          "You should call Tensor::Reshape(const std::vector<int> "
          "&shape)"
          "function before retrieving mutable_data from input tensor."));
  switch (static_cast<int>(place_)) {
    case static_cast<int>(PlaceType::kCPU): {
      return tensor->mutable_data<T>(platform::CPUPlace());
    }
#ifdef PADDLE_WITH_CUDA
    case static_cast<int>(PlaceType::kGPU): {
      int device_num = platform::GetCurrentDeviceId();
      return tensor->mutable_data<T>(platform::CUDAPlace(device_num));
    }
#endif
    default:
      PADDLE_THROW(platform::errors::Unavailable(
          "Custom operator unsupported place id(%d)",
          static_cast<int>(place_)));
  }
}

template <typename T>
T *Tensor::data() const {
  GET_CASTED_TENSOR;
  auto *res = tensor->data<T>();
  return res;
}

DataType Tensor::type() const {
  GET_CASTED_TENSOR;
  auto type = tensor->type();
  if (type == framework::proto::VarType::FP32) {
    return DataType::FLOAT32;
  } else if (type == framework::proto::VarType::INT64) {
    return DataType::INT64;
  } else if (type == framework::proto::VarType::INT32) {
    return DataType::INT32;
  } else if (type == framework::proto::VarType::INT16) {
    return DataType::INT16;
  } else if (type == framework::proto::VarType::INT8) {
    return DataType::INT8;
  } else if (type == framework::proto::VarType::UINT8) {
    return DataType::UINT8;
  } else if (type == framework::proto::VarType::FP64) {
    return DataType::FLOAT64;
  } else if (type == framework::proto::VarType::BOOL) {
    return DataType::BOOL;
169 170 171 172
  } else if (type == framework::proto::VarType::COMPLEX64) {
    return DataType::COMPLEX64;
  } else if (type == framework::proto::VarType::COMPLEX128) {
    return DataType::COMPLEX128;
173
  }
174
  // TODO(JiabinYang) Support more dtype here
175 176 177 178
  return DataType::FLOAT32;
}

template <typename T>
179
Tensor Tensor::copy_to(const PlaceType &target_place) const {
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
  GET_CASTED_TENSOR;
  PADDLE_ENFORCE_GE(tensor->numel(), 0,
                    platform::errors::PreconditionNotMet(
                        "You should call Tensor::Reshape(const "
                        "std::vector<int> &shape)"
                        "function before copying data from cpu."));
  size_t ele_size = tensor->numel() * sizeof(T);
  auto *p_src_data = tensor->data<T>();
  auto src_place = place();
  Tensor target = Tensor(target_place);
  target.reshape(shape());
  auto *p_target_data = target.template mutable_data<T>();

  if ((src_place == PlaceType::kCPU) && (target_place == PlaceType::kCPU)) {
    std::memcpy(static_cast<void *>(p_target_data), p_src_data, ele_size);
  } else if ((src_place == PlaceType::kGPU) &&
             (target_place == PlaceType::kCPU)) {
    GpuCopy<T>(p_src_data, p_target_data, src_place, target_place, ele_size);
  } else if ((src_place == PlaceType::kCPU) &&
             (target_place == PlaceType::kGPU)) {
    GpuCopy<T>(p_src_data, p_target_data, src_place, target_place, ele_size);
  } else if ((src_place == PlaceType::kGPU) &&
             (target_place == PlaceType::kGPU)) {
    GpuCopy<T>(p_src_data, p_target_data, src_place, target_place, ele_size);
  } else {
    PADDLE_THROW(platform::errors::Unavailable(
        "Not supported place transform of place: %d to place: %d",
        static_cast<int>(src_place), static_cast<int>(target_place)));
  }
  return target;
}

212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
template PD_DLL_DECL Tensor
Tensor::copy_to<float>(const PlaceType &target_place) const;
template PD_DLL_DECL Tensor
Tensor::copy_to<double>(const PlaceType &target_place) const;
template PD_DLL_DECL Tensor
Tensor::copy_to<int64_t>(const PlaceType &target_place) const;
template PD_DLL_DECL Tensor
Tensor::copy_to<int32_t>(const PlaceType &target_place) const;
template PD_DLL_DECL Tensor
Tensor::copy_to<uint8_t>(const PlaceType &target_place) const;
template PD_DLL_DECL Tensor
Tensor::copy_to<int8_t>(const PlaceType &target_place) const;
template PD_DLL_DECL Tensor
Tensor::copy_to<int16_t>(const PlaceType &target_place) const;
template PD_DLL_DECL Tensor
Tensor::copy_to<bool>(const PlaceType &target_place) const;
228 229 230 231
template PD_DLL_DECL Tensor Tensor::copy_to<paddle::platform::complex64>(
    const PlaceType &target_place) const;
template PD_DLL_DECL Tensor Tensor::copy_to<paddle::platform::complex128>(
    const PlaceType &target_place) const;
232

233 234 235 236 237 238 239 240
template PD_DLL_DECL float *Tensor::data<float>() const;
template PD_DLL_DECL double *Tensor::data<double>() const;
template PD_DLL_DECL int64_t *Tensor::data<int64_t>() const;
template PD_DLL_DECL int32_t *Tensor::data<int32_t>() const;
template PD_DLL_DECL uint8_t *Tensor::data<uint8_t>() const;
template PD_DLL_DECL int8_t *Tensor::data<int8_t>() const;
template PD_DLL_DECL int16_t *Tensor::data<int16_t>() const;
template PD_DLL_DECL bool *Tensor::data<bool>() const;
241 242 243 244
template PD_DLL_DECL paddle::platform::complex64 *
Tensor::data<paddle::platform::complex64>() const;
template PD_DLL_DECL paddle::platform::complex128 *
Tensor::data<paddle::platform::complex128>() const;
245

246 247 248 249 250 251 252 253
template PD_DLL_DECL float *Tensor::mutable_data<float>();
template PD_DLL_DECL double *Tensor::mutable_data<double>();
template PD_DLL_DECL int64_t *Tensor::mutable_data<int64_t>();
template PD_DLL_DECL int32_t *Tensor::mutable_data<int32_t>();
template PD_DLL_DECL uint8_t *Tensor::mutable_data<uint8_t>();
template PD_DLL_DECL int8_t *Tensor::mutable_data<int8_t>();
template PD_DLL_DECL int16_t *Tensor::mutable_data<int16_t>();
template PD_DLL_DECL bool *Tensor::mutable_data<bool>();
254 255 256 257
template PD_DLL_DECL paddle::platform::complex64 *
Tensor::mutable_data<paddle::platform::complex64>();
template PD_DLL_DECL paddle::platform::complex128 *
Tensor::mutable_data<paddle::platform::complex128>();
258

259 260 261 262 263 264 265 266 267 268 269 270 271 272
template PD_DLL_DECL float *Tensor::mutable_data<float>(const PlaceType &place);
template PD_DLL_DECL double *Tensor::mutable_data<double>(
    const PlaceType &place);
template PD_DLL_DECL int64_t *Tensor::mutable_data<int64_t>(
    const PlaceType &place);
template PD_DLL_DECL int32_t *Tensor::mutable_data<int32_t>(
    const PlaceType &place);
template PD_DLL_DECL uint8_t *Tensor::mutable_data<uint8_t>(
    const PlaceType &place);
template PD_DLL_DECL int8_t *Tensor::mutable_data<int8_t>(
    const PlaceType &place);
template PD_DLL_DECL int16_t *Tensor::mutable_data<int16_t>(
    const PlaceType &place);
template PD_DLL_DECL bool *Tensor::mutable_data<bool>(const PlaceType &place);
273 274 275 276
template PD_DLL_DECL paddle::platform::complex64 *
Tensor::mutable_data<paddle::platform::complex64>(const PlaceType &place);
template PD_DLL_DECL paddle::platform::complex128 *
Tensor::mutable_data<paddle::platform::complex128>(const PlaceType &place);
277

C
Chen Weihang 已提交
278
std::vector<int64_t> Tensor::shape() const {
279
  GET_CASTED_TENSOR
C
Chen Weihang 已提交
280
  return framework::vectorize<int64_t>(tensor->dims());
281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
}

const PlaceType &Tensor::place() const {
  GET_CASTED_TENSOR;
  if (platform::is_cpu_place(tensor->place())) {
    place_ = PlaceType::kCPU;
  } else if (platform::is_gpu_place(tensor->place())) {
    place_ = PlaceType::kGPU;
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Current Tensor hold unsupported Place Type, Please Init it"
        "using Tensor::mutable_data<T>(PaddlePlace) which T is"
        "either Place::kCPU or Place::kGPU"));
  }
  return place_;
}

298
Tensor Tensor::cast(const DataType &target_type) const {
299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
  GET_CASTED_TENSOR;
  Tensor rlt = Tensor(place());
  rlt.reshape(this->shape());
  auto rlt_tensor_ = static_cast<framework::LoDTensor *>(rlt.tensor_.get());
  platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
  auto ctx = pool.Get(tensor->place());
  auto src_type = tensor->type();
  auto dst_type =
      framework::CustomTensorUtils::ConvertEnumDTypeToInnerDType(target_type);
  switch (src_type) {
    case framework::proto::VarType::FP32:
      framework::VisitDataType(dst_type,
                               CastDataType<float>(*tensor, rlt_tensor_, ctx));
      break;
    case framework::proto::VarType::FP64:
      framework::VisitDataType(dst_type,
                               CastDataType<double>(*tensor, rlt_tensor_, ctx));
      break;
    case framework::proto::VarType::INT32:
      framework::VisitDataType(dst_type,
                               CastDataType<int>(*tensor, rlt_tensor_, ctx));
      break;
    case framework::proto::VarType::INT64:
      framework::VisitDataType(
          dst_type, CastDataType<int64_t>(*tensor, rlt_tensor_, ctx));
      break;
    case framework::proto::VarType::BOOL:
      framework::VisitDataType(dst_type,
                               CastDataType<bool>(*tensor, rlt_tensor_, ctx));
      break;
    case framework::proto::VarType::INT16:
      framework::VisitDataType(
          dst_type, CastDataType<int16_t>(*tensor, rlt_tensor_, ctx));
      break;
    case framework::proto::VarType::UINT8:
      framework::VisitDataType(
          dst_type, CastDataType<uint8_t>(*tensor, rlt_tensor_, ctx));
      break;
337 338 339 340 341 342 343 344 345 346
    case framework::proto::VarType::COMPLEX64:
      framework::VisitDataType(
          dst_type,
          CastDataType<paddle::platform::complex64>(*tensor, rlt_tensor_, ctx));
      break;
    case framework::proto::VarType::COMPLEX128:
      framework::VisitDataType(dst_type,
                               CastDataType<paddle::platform::complex128>(
                                   *tensor, rlt_tensor_, ctx));
      break;
347
    // TODO(JiabinYang) Support more dtype here
348 349 350 351 352 353 354 355 356 357 358 359 360
    default:
      PADDLE_THROW(platform::errors::Unimplemented(
          "Data type (%s) is not supported when casting data type.",
          framework::DataTypeToString(src_type)));
  }
  return rlt;
}

int64_t Tensor::size() const {
  GET_CASTED_TENSOR;
  return tensor->numel();
}

361 362 363 364 365 366 367 368 369 370 371 372
#ifdef PADDLE_WITH_CUDA
cudaStream_t Tensor::stream() const {
  if (!stream_.IsStreamSet()) {
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "Stream is not Set, only input tensor will have "
        "stream which is set by framework "));
  } else {
    return reinterpret_cast<cudaStream_t>(stream_.GetStream());
  }
}
#endif

373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
namespace framework {

void CustomTensorUtils::ShareDataTo(const paddle::Tensor &src, void *dst) {
  static_cast<framework::LoDTensor *>(dst)->ShareDataWith(
      *static_cast<framework::LoDTensor *>(src.tensor_.get()));
}

void CustomTensorUtils::ShareDataFrom(const void *src,
                                      const paddle::Tensor &dst) {
  if (!dst.tensor_) {
    dst.tensor_ = std::make_shared<framework::LoDTensor>();
  }
  auto *tensor = static_cast<framework::LoDTensor *>(dst.tensor_.get());
  tensor->ShareDataWith(*static_cast<const framework::LoDTensor *>(src));
}

}  // namespace framework
}  // namespace paddle