dist_eltwise.py 7.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License

from .common import DistributedOperatorImplContainer
from .common import DistributedOperatorImpl
from .common import register_distributed_operator_impl_container
from .common import register_distributed_operator_impl
from .common import is_elementwise_op
from ..utils import is_dim_shard
from ..utils import is_dim_replicate
from ..utils import is_valid_list_index
from ..utils import compute_compatible_dim_mapping
from ..utils import compute_compatible_dims_mapping
from ..utils import compute_compatible_and_update_dim_mapping
from ..dist_attribute import OperatorDistributedAttribute
from paddle.fluid import core, unique_name
from paddle.fluid.framework import in_dygraph_mode
from paddle.fluid.framework import Program, Parameter, Variable, program_guard
from paddle.fluid.data_feeder import check_variable_and_dtype, check_dtype
from paddle.distributed.fleet.meta_optimizers.common import OpRole, OP_ROLE_KEY, OP_ROLE_VAR_KEY
from ..process_group import new_process_group
from ..utils import _get_comm_group, _get_corresponding_rank
from .dist_default import DistributedDefaultImpl0


class DistributedElementwise(DistributedOperatorImplContainer):
    def __init__(self, op_type):
        super(DistributedElementwise, self).__init__(op_type)


register_distributed_operator_impl_container(
    DistributedElementwise("elementwise"))


# Replicated Elementwise
class DistributedElementwiseImpl0(DistributedOperatorImpl):
    def __init__(self, name):
        super(DistributedElementwiseImpl0, self).__init__(name)
        self._forward_implemented = False
        self._backward_implemented = False

    def is_input_compatible(self, dist_op):
        op_desc = dist_op.serial_op.desc
        if is_elementwise_op(op_desc.type()):
            return True
        else:
            return False

    def is_output_compatible(self, dist_op):
        op_desc = dist_op.serial_op.desc
        op_desc = dist_op.serial_op.desc
        if is_elementwise_op(op_desc.type()):
            return True
        else:
            return False

    def is_auto_compatible(self, dist_op):
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
        dims_mapping_list = []
        input_arg_names = op_desc.input_arg_names()
        max_dims_mapping_len = -1
        for arg_name in input_arg_names:
            dims_mapping = op_dist_attr.get_input_dims_mapping(arg_name)
            if max_dims_mapping_len < len(dims_mapping):
                max_dims_mapping_len = len(dims_mapping)
            dims_mapping_list.append(dims_mapping)
        output_arg_names = op_desc.output_arg_names()
        for arg_name in output_arg_names:
            dims_mapping = op_dist_attr.get_output_dims_mapping(arg_name)
            assert len(dims_mapping) == max_dims_mapping_len
            dims_mapping_list.append(dims_mapping)

        for idx in range(max_dims_mapping_len):
            dim_mappings = []
            for dims_mapping in dims_mapping_list:
                if idx < len(dims_mapping):
                    dim_mappings.append(dims_mapping[-(idx + 1)])
            if not all(dim_mappings[0] == dim_mapping
                       for dim_mapping in dim_mappings):
                return False
        return True

    def update_dims_mapping(self, dist_op):
        changed = False
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
        input_arg_names = op_desc.input_arg_names()
        input_dims_mapping_dict = {}
        input_dims_mapping_lens = {}
        max_dims_mapping_len = -1
        for arg_name in input_arg_names:
            dims_mapping = op_dist_attr.get_input_dims_mapping(arg_name)
            if max_dims_mapping_len < len(dims_mapping):
                max_dims_mapping_len = len(dims_mapping)
            input_dims_mapping_dict[arg_name] = dims_mapping
            input_dims_mapping_lens[arg_name] = len(dims_mapping)

        dims_mapping_list = []
        for arg_name in input_arg_names:
            if input_dims_mapping_lens[arg_name] < max_dims_mapping_len:
                new_dims_mapping = [-1 for _ in range(max_dims_mapping_len)]
                for i in range(input_dims_mapping_lens[arg_name]):
                    new_idx = (max_dims_mapping_len -
                               input_dims_mapping_lens[arg_name]) + i
                    new_dims_mapping[new_idx] = input_dims_mapping_dict[
                        arg_name][i]
                dims_mapping_list.append(new_dims_mapping)
            else:
                dims_mapping_list.append(input_dims_mapping_dict[arg_name])
        output_arg_names = op_desc.output_arg_names()
        for arg_name in output_arg_names:
            dims_mapping = op_dist_attr.get_output_dims_mapping(arg_name)
            assert len(dims_mapping) == max_dims_mapping_len
            dims_mapping_list.append(dims_mapping)

        compatible_dims_mapping = compute_compatible_dims_mapping(
            dims_mapping_list)
        assert compatible_dims_mapping is not None, "There is no compatible dim mapping."

        for arg_name in input_arg_names:
            if input_dims_mapping_lens[arg_name] < max_dims_mapping_len:
                new_dims_mapping = [
                    -1 for _ in range(input_dims_mapping_lens[arg_name])
                ]
                for i in range(input_dims_mapping_lens[arg_name]):
                    new_idx = (max_dims_mapping_len -
                               input_dims_mapping_lens[arg_name]) + i
                    new_dims_mapping[i] = compatible_dims_mapping[new_idx]
                if new_dims_mapping != input_dims_mapping_dict[arg_name]:
                    op_dist_attr.set_input_dims_mapping(arg_name,
                                                        new_dims_mapping)
                    changed = True
            else:
                if compatible_dims_mapping != input_dims_mapping_dict[arg_name]:
                    op_dist_attr.set_input_dims_mapping(arg_name,
                                                        compatible_dims_mapping)
                    changed = True

        for arg_name in output_arg_names:
            dims_mapping = op_dist_attr.get_output_dims_mapping(arg_name)
            if compatible_dims_mapping != dims_mapping:
                op_dist_attr.set_output_dims_mapping(arg_name,
                                                     compatible_dims_mapping)
                changed = True

        return changed

    @staticmethod
    def forward(ctx, *args, **kwargs):
        DistributedDefaultImpl0.forward(ctx, *args, **kwargs)

    @staticmethod
    def backward(ctx, *args, **kwargs):
        DistributedDefaultImpl0.backward(ctx, *args, **kwargs)


register_distributed_operator_impl(
    "elementwise", DistributedElementwiseImpl0("replicate_parallel"))