tensor_array_read_write_op.cc 8.1 KB
Newer Older
Y
Yu Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */
#include "paddle/framework/lod_tensor_array.h"
#include "paddle/framework/op_registry.h"

namespace paddle {
namespace operators {
class ArrayOpBase : public framework::OperatorBase {
 public:
  ArrayOpBase(const std::string &type, const framework::VariableNameMap &inputs,
              const framework::VariableNameMap &outputs,
              const framework::AttributeMap &attrs)
      : OperatorBase(type, inputs, outputs, attrs) {}
  void Run(const framework::Scope &scope,
           const platform::DeviceContext &dev_ctx) const override {}

 protected:
  size_t GetOffset(const framework::Scope &scope,
                   const platform::DeviceContext &dev_ctx) const {
    auto *i = scope.FindVar(Input("I"));
    PADDLE_ENFORCE(i != nullptr, "I must be set");
    auto &i_tensor = i->Get<framework::LoDTensor>();
    PADDLE_ENFORCE_EQ(i_tensor.numel(), 1);
    size_t offset;
    if (platform::is_gpu_place(i_tensor.place())) {
      // FIXME: Avoid copy from GPU to CPU
      framework::Tensor t;
      t.CopyFrom(i_tensor, platform::CPUPlace(), dev_ctx);
      dev_ctx.Wait();
      offset = static_cast<size_t>(*t.data<int64_t>());
    } else {
      offset = static_cast<size_t>(*i_tensor.data<int64_t>());
    }
    return offset;
  }
};

class WriteToArrayOp : public ArrayOpBase {
 public:
  WriteToArrayOp(const std::string &type,
                 const framework::VariableNameMap &inputs,
                 const framework::VariableNameMap &outputs,
                 const framework::AttributeMap &attrs)
      : ArrayOpBase(type, inputs, outputs, attrs) {}

  void Run(const framework::Scope &scope,
           const platform::DeviceContext &dev_ctx) const override {
    auto *x = scope.FindVar(Input("X"));
    PADDLE_ENFORCE(x != nullptr, "X must be set");
    auto &x_tensor = x->Get<framework::LoDTensor>();
    size_t offset = GetOffset(scope, dev_ctx);
    auto *out =
        scope.FindVar(Output("Out"))->GetMutable<framework::LoDTensorArray>();
    if (offset >= out->size()) {
      out->resize(offset + 1);
    }
    auto *out_tensor = &out->at(offset);
    out_tensor->CopyFrom(x_tensor, dev_ctx.GetPlace(), dev_ctx);
    out_tensor->set_lod(x_tensor.lod());
  }
};

class WriteToArrayOpProtoMaker : public framework::OpProtoAndCheckerMaker {
 public:
  WriteToArrayOpProtoMaker(framework::OpProto *proto,
                           framework::OpAttrChecker *op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput("X", "(LoDTensor) the tensor will be written to tensor array");
    AddInput(
        "I",
        "(Tensor) the subscript index in tensor array. The number of element "
        "should be 1");
    AddOutput("Out", "(TensorArray) the tensor array will be written");
    AddComment(R"DOC(Write a LoDTensor to a LoDTensor array.

Assume T is LoDTensor, i is the subscript of the array, and A is the array. The
equation is

A[i] = T
)DOC");
  }
};

class WriteToArrayInferShape : public framework::InferShapeBase {
 public:
  void operator()(framework::InferShapeContext *context) const override {
    PADDLE_ENFORCE(context->HasInput("I"), "Must set the subscript index");
    PADDLE_ENFORCE_EQ(framework::product(context->GetInputDim("I")), 1,
                      "The number of element of subscript index must be 1");
    PADDLE_ENFORCE(context->HasInput("X"), NotHasXError());
    PADDLE_ENFORCE(context->HasOutput("Out"), NotHasOutError());
    context->SetOutputDim("Out", context->GetInputDim("X"));
  }

 protected:
  virtual const char *NotHasXError() const { return "Must set the lod tensor"; }

  virtual const char *NotHasOutError() const {
    return "Must set the lod tensor array";
  }
};

class WriteToArrayInferVarType : public framework::VarTypeInference {
 public:
  void operator()(const framework::OpDescBind &op_desc,
                  framework::BlockDescBind *block) const override {
    VLOG(10) << "I am here?";
    for (auto &out_var : op_desc.OutputArgumentNames()) {
      VLOG(10) << "Set Variable " << out_var << " as LOD_TENSOR_ARRAY";
      block->Var(out_var)->SetType(framework::VarDesc::LOD_TENSOR_ARRAY);
    }
  }
};

class ReadFromArrayOp : public ArrayOpBase {
 public:
  ReadFromArrayOp(const std::string &type,
                  const framework::VariableNameMap &inputs,
                  const framework::VariableNameMap &outputs,
                  const framework::AttributeMap &attrs)
      : ArrayOpBase(type, inputs, outputs, attrs) {}
  void Run(const framework::Scope &scope,
           const platform::DeviceContext &dev_ctx) const override {
    auto *x = scope.FindVar(Input("X"));
    PADDLE_ENFORCE(x != nullptr, "X must be set");
    auto &x_array = x->Get<framework::LoDTensorArray>();
    auto *out = scope.FindVar(Output("Out"));
    PADDLE_ENFORCE(out != nullptr, "Out must be set");
    auto *out_tesnor = out->GetMutable<framework::LoDTensor>();
    size_t offset = GetOffset(scope, dev_ctx);
    PADDLE_ENFORCE_LT(offset, x_array.size());
    out_tesnor->CopyFrom(x_array[offset], dev_ctx.GetPlace(), dev_ctx);
    out_tesnor->set_lod(x_array[offset].lod());
  }
};

class ReadFromArrayProtoMaker : public framework::OpProtoAndCheckerMaker {
 public:
  ReadFromArrayProtoMaker(framework::OpProto *proto,
                          framework::OpAttrChecker *op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput("X", "(TensorArray) the array will be read from.");
    AddInput("I",
             "(Tensor) the subscript index in tensor array. The number of "
             "element should be 1");
    AddOutput("Out", "(LoDTensor) the tensor will be read from.");
    AddComment(R"DOC(Read a LoDTensor from a LoDTensor Array

Assume T is LoDTensor, i is th e subscript of the array, and A is the array. The
equation is

T = A[i]
)DOC");
  }
};

class ReadFromArrayInferShape : public WriteToArrayInferShape {
 protected:
  const char *NotHasXError() const override {
    return "The input array X must be set";
  }
  const char *NotHasOutError() const override {
    return "The output tensor out must be set";
  }
};

class WriteToArrayGradMaker : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

 protected:
  std::unique_ptr<framework::OpDescBind> Apply() const override {
    auto *grad_op = new framework::OpDescBind();
    grad_op->SetType("read_from_array");
    grad_op->SetInput("I", Input("I"));
    grad_op->SetInput("X", OutputGrad("Out"));
    grad_op->SetOutput("Out", InputGrad("X"));
    grad_op->SetAttrMap(Attrs());
    return std::unique_ptr<framework::OpDescBind>(grad_op);
  }
};

class ReadFromArrayGradMaker : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

 protected:
  std::unique_ptr<framework::OpDescBind> Apply() const override {
    auto *grad_op = new framework::OpDescBind();
    grad_op->SetType("write_to_array");
    grad_op->SetInput("I", Input("I"));
    grad_op->SetInput("X", OutputGrad("Out"));
    grad_op->SetOutput("Out", InputGrad("X"));
    grad_op->SetAttrMap(Attrs());
    return std::unique_ptr<framework::OpDescBind>(grad_op);
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(write_to_array, ops::WriteToArrayOp,
                  ops::WriteToArrayInferShape, ops::WriteToArrayOpProtoMaker,
                  ops::WriteToArrayGradMaker, ops::WriteToArrayInferVarType);
REGISTER_OPERATOR(read_from_array, ops::ReadFromArrayOp,
                  ops::ReadFromArrayInferShape, ops::ReadFromArrayProtoMaker,
                  ops::ReadFromArrayGradMaker);