gru_compute.cu 7.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
G
guosheng 已提交
2 3 4 5 6 7 8 9 10 11
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
12 13 14 15
#include "paddle/fluid/operators/math/detail/gru_gpu_kernel.h"
#include "paddle/fluid/operators/math/detail/gru_kernel.h"
#include "paddle/fluid/operators/math/gru_compute.h"
#include "paddle/fluid/operators/math/math_function.h"
G
guosheng 已提交
16 17 18 19 20 21

namespace paddle {
namespace operators {
namespace math {

template <typename T>
Q
QI JUN 已提交
22 23
struct GRUUnitFunctor<platform::CUDADeviceContext, T> {
  static void compute(const platform::CUDADeviceContext &context,
24
                      GRUMetaValue<T> value, int frame_size, int batch_size,
25 26
                      const detail::ActivationType active_node,
                      const detail::ActivationType active_gate) {
Q
QI JUN 已提交
27
    auto stream = context.stream();
G
guosheng 已提交
28 29
    dim3 threads;
    dim3 grid;
G
guosheng 已提交
30 31 32 33 34
    if (batch_size == 1) {
      int frame_per_block = frame_size <= 1024 ? frame_size : 1024;
      int frame_blocks = (frame_size + 1024 - 1) / 1024;
      threads = dim3(frame_per_block, 1);
      grid = dim3(frame_blocks, 1);
G
guosheng 已提交
35 36
    } else {
      threads = dim3(32, 32);
G
guosheng 已提交
37
      grid = dim3((frame_size + 32 - 1) / 32, (batch_size + 32 - 1) / 32);
G
guosheng 已提交
38 39
    }

G
guosheng 已提交
40
    if (value.prev_out_value) {
Q
QI JUN 已提交
41
      math::gemm<platform::CUDADeviceContext, T>(
G
guosheng 已提交
42 43 44
          context, false, false, batch_size, frame_size * 2, frame_size, 1,
          value.prev_out_value, frame_size, value.gate_weight, frame_size * 2,
          1, value.gate_value, frame_size * 3);
G
guosheng 已提交
45 46
    }

G
guosheng 已提交
47
    if (batch_size == 1) {
G
guosheng 已提交
48
      detail::KeGruForwardResetOutput<detail::forward::gru_resetOutput<T>,
G
guosheng 已提交
49
                                      /* is_batch= */ false,
G
guosheng 已提交
50
                                      T><<<grid, threads, 0, stream>>>(
G
guosheng 已提交
51 52 53
          detail::forward::gru_resetOutput<T>(), value.gate_value,
          value.reset_output_value, value.prev_out_value, frame_size,
          batch_size, active_gate);
G
guosheng 已提交
54 55
    } else {
      detail::KeGruForwardResetOutput<detail::forward::gru_resetOutput<T>,
G
guosheng 已提交
56
                                      /* is_batch= */ true,
G
guosheng 已提交
57
                                      T><<<grid, threads, 0, stream>>>(
G
guosheng 已提交
58 59 60
          detail::forward::gru_resetOutput<T>(), value.gate_value,
          value.reset_output_value, value.prev_out_value, frame_size,
          batch_size, active_gate);
G
guosheng 已提交
61 62
    }

G
guosheng 已提交
63
    if (value.prev_out_value) {
Q
QI JUN 已提交
64
      math::gemm<platform::CUDADeviceContext, T>(
G
guosheng 已提交
65 66 67
          context, false, false, batch_size, frame_size, frame_size, 1,
          value.reset_output_value, frame_size, value.state_weight, frame_size,
          1, value.gate_value + frame_size * 2, frame_size * 3);
G
guosheng 已提交
68 69
    }

G
guosheng 已提交
70
    if (batch_size == 1) {
G
guosheng 已提交
71
      detail::KeGruForwardFinalOutput<detail::forward::gru_finalOutput<T>,
G
guosheng 已提交
72
                                      /* is_batch= */ false,
G
guosheng 已提交
73
                                      T><<<grid, threads, 0, stream>>>(
G
guosheng 已提交
74 75
          detail::forward::gru_finalOutput<T>(), value.gate_value,
          value.prev_out_value, value.output_value, frame_size, batch_size,
G
guosheng 已提交
76 77 78
          active_node);
    } else {
      detail::KeGruForwardFinalOutput<detail::forward::gru_finalOutput<T>,
G
guosheng 已提交
79
                                      /* is_batch= */ true,
G
guosheng 已提交
80
                                      T><<<grid, threads, 0, stream>>>(
G
guosheng 已提交
81 82
          detail::forward::gru_finalOutput<T>(), value.gate_value,
          value.prev_out_value, value.output_value, frame_size, batch_size,
G
guosheng 已提交
83 84 85 86 87 88
          active_node);
    }
  }
};

template <typename T>
Q
QI JUN 已提交
89 90
struct GRUUnitGradFunctor<platform::CUDADeviceContext, T> {
  static void compute(const platform::CUDADeviceContext &context,
91
                      GRUMetaValue<T> value, GRUMetaGrad<T> grad,
G
guosheng 已提交
92
                      int frame_size, int batch_size,
93 94
                      const detail::ActivationType active_node,
                      const detail::ActivationType active_gate) {
Q
QI JUN 已提交
95
    auto stream = context.stream();
G
guosheng 已提交
96 97
    dim3 threads;
    dim3 grid;
G
guosheng 已提交
98 99 100 101 102
    if (batch_size == 1) {
      int frame_per_block = frame_size <= 1024 ? frame_size : 1024;
      int frame_blocks = (frame_size + 1024 - 1) / 1024;
      threads = dim3(frame_per_block, 1);
      grid = dim3(frame_blocks, 1);
G
guosheng 已提交
103 104
    } else {
      threads = dim3(32, 32);
G
guosheng 已提交
105
      grid = dim3((frame_size + 32 - 1) / 32, (batch_size + 32 - 1) / 32);
G
guosheng 已提交
106 107
    }

G
guosheng 已提交
108
    if (batch_size == 1) {
G
guosheng 已提交
109 110
      detail::KeGruBackwardStateGrad<
          detail::backward::gru_stateGrad<T>,
G
guosheng 已提交
111 112 113 114
          /* is_batch= */ false><<<grid, threads, 0, stream>>>(
          detail::backward::gru_stateGrad<T>(), value.gate_value,
          grad.gate_grad, value.prev_out_value, grad.prev_out_grad,
          grad.output_grad, frame_size, batch_size, active_node);
G
guosheng 已提交
115 116 117
    } else {
      detail::KeGruBackwardStateGrad<
          detail::backward::gru_stateGrad<T>,
G
guosheng 已提交
118 119 120 121
          /* is_batch= */ true><<<grid, threads, 0, stream>>>(
          detail::backward::gru_stateGrad<T>(), value.gate_value,
          grad.gate_grad, value.prev_out_value, grad.prev_out_grad,
          grad.output_grad, frame_size, batch_size, active_node);
G
guosheng 已提交
122 123
    }

G
guosheng 已提交
124
    if (value.prev_out_value && grad.prev_out_grad) {
Q
QI JUN 已提交
125
      math::gemm<platform::CUDADeviceContext, T>(
G
guosheng 已提交
126 127 128
          context, false, true, batch_size, frame_size, frame_size, 1,
          grad.gate_grad + frame_size * 2, frame_size * 3, value.state_weight,
          frame_size, 0, grad.reset_output_grad, frame_size);
G
guosheng 已提交
129

G
guosheng 已提交
130
      if (grad.state_weight_grad) {
Q
QI JUN 已提交
131
        math::gemm<platform::CUDADeviceContext, T>(
G
guosheng 已提交
132 133 134 135
            context, true, false, frame_size, frame_size, batch_size, 1,
            value.reset_output_value, frame_size,
            grad.gate_grad + frame_size * 2, frame_size * 3, 1,
            grad.state_weight_grad, frame_size);
G
guosheng 已提交
136 137 138
      }
    }

G
guosheng 已提交
139
    if (batch_size == 1) {
G
guosheng 已提交
140 141
      detail::KeGruBackwardResetGrad<
          detail::backward::gru_resetGrad<T>,
G
guosheng 已提交
142 143 144 145
          /* is_batch= */ false><<<grid, threads, 0, stream>>>(
          detail::backward::gru_resetGrad<T>(), value.gate_value,
          grad.gate_grad, value.prev_out_value, grad.prev_out_grad,
          grad.reset_output_grad, frame_size, batch_size, active_gate);
G
guosheng 已提交
146 147 148
    } else {
      detail::KeGruBackwardResetGrad<
          detail::backward::gru_resetGrad<T>,
G
guosheng 已提交
149 150 151 152
          /* is_batch= */ true><<<grid, threads, 0, stream>>>(
          detail::backward::gru_resetGrad<T>(), value.gate_value,
          grad.gate_grad, value.prev_out_value, grad.prev_out_grad,
          grad.reset_output_grad, frame_size, batch_size, active_gate);
G
guosheng 已提交
153 154
    }

G
guosheng 已提交
155
    if (grad.prev_out_grad && value.prev_out_value) {
Q
QI JUN 已提交
156
      math::gemm<platform::CUDADeviceContext, T>(
G
guosheng 已提交
157 158 159
          context, false, true, batch_size, frame_size, frame_size * 2, 1,
          grad.gate_grad, frame_size * 3, value.gate_weight, frame_size * 2, 1,
          grad.prev_out_grad, frame_size);
G
guosheng 已提交
160

G
guosheng 已提交
161
      if (grad.gate_weight_grad) {
Q
QI JUN 已提交
162
        math::gemm<platform::CUDADeviceContext, T>(
G
guosheng 已提交
163 164 165
            context, true, false, frame_size, frame_size * 2, batch_size, 1,
            value.prev_out_value, frame_size, grad.gate_grad, frame_size * 3, 1,
            grad.gate_weight_grad, frame_size * 2);
G
guosheng 已提交
166 167 168 169 170
      }
    }
  }
};

Q
QI JUN 已提交
171 172 173 174
template struct GRUUnitFunctor<platform::CUDADeviceContext, float>;
template struct GRUUnitFunctor<platform::CUDADeviceContext, double>;
template struct GRUUnitGradFunctor<platform::CUDADeviceContext, float>;
template struct GRUUnitGradFunctor<platform::CUDADeviceContext, double>;
G
guosheng 已提交
175 176 177

}  // namespace math
}  // namespace operators
G
guosheng 已提交
178
}  // namespace paddle