ps_gpu_worker.cc 6.8 KB
Newer Older
T
Thunderbrook 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

  http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/device_worker.h"
#include "paddle/fluid/framework/device_worker_factory.h"
#include "paddle/fluid/framework/fleet/fleet_wrapper.h"
#include "paddle/fluid/framework/fleet/heter_wrapper.h"
#include "paddle/fluid/platform/cpu_helper.h"
#include "paddle/fluid/string/string_helper.h"

22 23
#if (defined PADDLE_WITH_NCCL || defined PADDLE_WITH_RCCL) && \
    (defined PADDLE_WITH_PSLIB)
T
Thunderbrook 已提交
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
#include "paddle/fluid/platform/cuda_device_guard.h"

#if defined _WIN32 || defined __APPLE__
#else
#define _LINUX
#endif

namespace paddle {
namespace framework {

void PSGPUWorker::Initialize(const TrainerDesc& desc) {
  param_ = desc.downpour_param();
  mpi_rank_ = desc.mpi_rank();
  trainer_desc_ = desc;
  /*
  for (int i = 0; i < trainer_desc_.xpu_recv_list_size(); ++i) {
    send_var_list_.push_back(trainer_desc_.xpu_recv_list(i));
  }
  */
  for (int i = 0; i < param_.sparse_table_size(); ++i) {
    uint64_t table_id =
        static_cast<uint64_t>(param_.sparse_table(i).table_id());
    TableParameter table = param_.sparse_table(i);
    sparse_key_names_[table_id].resize(table.sparse_key_name_size());
    for (int j = 0; j < table.sparse_key_name_size(); ++j) {
      sparse_key_names_[table_id][j] = table.sparse_key_name(j);
    }
    sparse_value_names_[table_id].resize(table.sparse_value_name_size());
    for (int j = 0; j < table.sparse_value_name_size(); ++j) {
      sparse_value_names_[table_id][j] = table.sparse_value_name(j);
    }
    sparse_grad_names_[table_id].resize(table.sparse_grad_name_size());
    for (int j = 0; j < table.sparse_grad_name_size(); ++j) {
      sparse_grad_names_[table_id][j] = table.sparse_grad_name(j);
    }
    label_var_name_[table_id] = table.label_var_name();
    sparse_push_keys_[table_id] = std::vector<uint64_t>();
  }

  for (int i = 0; i < param_.dense_table_size(); ++i) {
    uint64_t table_id = static_cast<uint64_t>(param_.dense_table(i).table_id());
    auto table = param_.dense_table(i);
    dense_value_names_[table_id].resize(table.dense_value_name_size());
    for (int j = 0; j < table.dense_value_name_size(); ++j) {
      dense_value_names_[table_id][j] = table.dense_value_name(j);
    }
    dense_grad_names_[table_id].resize(table.dense_grad_name_size());
    for (int j = 0; j < table.dense_grad_name_size(); ++j) {
      dense_grad_names_[table_id][j] = table.dense_grad_name(j);
    }
  }

  skip_ops_.resize(param_.skip_ops_size());
  for (int i = 0; i < param_.skip_ops_size(); ++i) {
    skip_ops_[i] = param_.skip_ops(i);
  }
  for (int i = 0; i < param_.stat_var_names_size(); ++i) {
    stat_var_name_map_[param_.stat_var_names(i)] = 1;
  }

  need_to_push_sparse_ = param_.push_sparse();
  need_to_push_dense_ = param_.push_dense();

  fetch_config_ = desc.fetch_config();
  use_cvm_ = desc.use_cvm();
  // for sparse value accessor, embedding only
  no_cvm_ = desc.no_cvm();
  scale_datanorm_ = desc.scale_datanorm();
  dump_slot_ = desc.dump_slot();
  dump_fields_.resize(desc.dump_fields_size());
  for (int i = 0; i < desc.dump_fields_size(); ++i) {
    dump_fields_[i] = desc.dump_fields(i);
  }
  adjust_ins_weight_config_ = desc.adjust_ins_weight_config();
  need_dump_param_ = false;
  dump_param_.resize(desc.dump_param_size());
  for (int i = 0; i < desc.dump_param_size(); ++i) {
    dump_param_[i] = desc.dump_param(i);
  }
  if (desc.dump_param_size() != 0) {
    need_dump_param_ = true;
  }
  for (int i = 0; i < desc.check_nan_var_names_size(); ++i) {
    check_nan_var_names_.push_back(desc.check_nan_var_names(i));
  }
  copy_table_config_ = desc.copy_table_config();
  for (int i = 0; i < copy_table_config_.src_sparse_tables_size(); ++i) {
    uint64_t src_table = copy_table_config_.src_sparse_tables(i);
    uint64_t dest_table = copy_table_config_.dest_sparse_tables(i);
    VLOG(3) << "copy_sparse_tables_ push back " << src_table << "->"
            << dest_table;
    copy_sparse_tables_.push_back(std::make_pair(src_table, dest_table));
  }
  for (int i = 0; i < copy_table_config_.src_dense_tables_size(); ++i) {
    uint64_t src_table = copy_table_config_.src_dense_tables(i);
    uint64_t dest_table = copy_table_config_.dest_dense_tables(i);
    VLOG(3) << "copy_dense_tables_ push back " << src_table << "->"
            << dest_table;
    copy_dense_tables_.push_back(std::make_pair(src_table, dest_table));
  }
  for (auto& m : copy_table_config_.table_denpendency_map()) {
    if (sparse_key_names_.find(m.key()) != sparse_key_names_.end()) {
      // currently only support one dependency
      for (auto& value : m.values()) {
        table_dependency_[m.key()] = value;
      }
    }
  }
  // pull_queue_ = paddle::framework::MakeChannel<std::shared_ptr<HeterTask>>();
  // push_queue_ = paddle::framework::MakeChannel<std::shared_ptr<HeterTask>>();
}

void PSGPUWorker::SetChannelWriter(ChannelObject<std::string>* queue) {
  writer_.Reset(queue);
}

void PSGPUWorker::SetNeedDump(bool need_dump_field) {
  need_dump_field_ = need_dump_field;
}

void PSGPUWorker::DumpParam() {}

void PSGPUWorker::TrainFiles() {
  platform::SetNumThreads(1);
148 149 150 151
  platform::Timer timeline;
  timeline.Start();

  int total_ins_num = 0;
T
Thunderbrook 已提交
152 153 154 155 156

  // how to accumulate fetched values here
  device_reader_->Start();
  int cur_batch;
  while ((cur_batch = device_reader_->Next()) > 0) {
157
    total_ins_num += cur_batch;
T
Thunderbrook 已提交
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
    for (auto& op : ops_) {
      bool need_skip = false;
      for (auto t = 0u; t < skip_ops_.size(); ++t) {
        if (op->Type().find(skip_ops_[t]) != std::string::npos) {
          need_skip = true;
          break;
        }
      }
      if (!need_skip) {
        op->Run(*thread_scope_, place_);
      }
    }

    PrintFetchVars();
    thread_scope_->DropKids();
  }
174 175 176
  timeline.Pause();
  VLOG(1) << "GpuPs worker " << thread_id_ << " train cost "
          << timeline.ElapsedSec() << " seconds, ins_num: " << total_ins_num;
T
Thunderbrook 已提交
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
  return;
}

void PSGPUWorker::ResetStat() {
  total_time_ = 0;
  read_time_ = 0;
  pack_time_ = 0;
  pull_sparse_local_time_ = 0;
  op_all_time_ = 0;
  xpu_op_time_ = 0;
  xpu_wait_time_ = 0;
  cpu_op_time_ = 0;
  collect_label_time_ = 0;
  fill_sparse_time_ = 0;
  push_sparse_time_ = 0;
  gpu_2_cpu_time_ = 0;
  cpu_2_gpu_time_ = 0;
  total_inst_ = 0;
}

void PSGPUWorker::ProduceTasks() { return; }

}  // end namespace framework
}  // end namespace paddle
#endif