heterbox_trainer.cc 10.4 KB
Newer Older
T
Thunderbrook 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15 16 17 18 19 20 21 22
#include <cstdlib>
#include <string>
#include <vector>
#include "io/fs.h"
#include "paddle/fluid/framework/data_feed_factory.h"
#include "paddle/fluid/framework/data_set.h"
#include "paddle/fluid/framework/device_worker_factory.h"
#include "paddle/fluid/framework/fleet/fleet_wrapper.h"
23
#include "paddle/fluid/framework/trainer.h"
24 25
#if (defined PADDLE_WITH_CUDA || defined PADDLE_WITH_HIP || \
     defined PADDLE_WITH_XPU) &&                            \
T
Thunderbrook 已提交
26
    (defined PADDLE_WITH_PSLIB)
27
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
T
Thunderbrook 已提交
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
#include "paddle/fluid/platform/cuda_device_guard.h"
#endif
namespace paddle {
namespace framework {

void HeterBoxTrainer::Initialize(const TrainerDesc& trainer_desc,
                                 Dataset* dataset) {
  thread_num_ = trainer_desc.thread_num();
  param_ = trainer_desc.downpour_param();
  for (int i = 0; i < param_.dense_table_size(); ++i) {
    uint64_t table_id = static_cast<uint64_t>(param_.dense_table(i).table_id());
    auto table = param_.dense_table(i);
    dense_grad_names_[table_id].resize(table.dense_grad_name_size());
    for (int j = 0; j < table.dense_grad_name_size(); ++j) {
      dense_grad_names_[table_id][j] = table.dense_grad_name(j);
    }
  }
  RegisterHeterCallback();
  scale_datanorm_ = trainer_desc.scale_datanorm();
  int place_num = trainer_desc.worker_places_size();
  const std::vector<paddle::framework::DataFeed*> readers =
      dataset->GetReaders();
  for (int i = 0; i < place_num; ++i) {
    int num = trainer_desc.worker_places(i);
52
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
T
Thunderbrook 已提交
53 54
    platform::CUDAPlace place = platform::CUDAPlace(num);
    platform::CUDADeviceGuard guard(place.device);
55 56 57 58
    gpuStream_t stream;
#ifdef PADDLE_WITH_HIP
    PADDLE_ENFORCE_CUDA_SUCCESS(hipStreamCreate(&stream));
#else
T
Thunderbrook 已提交
59
    PADDLE_ENFORCE_CUDA_SUCCESS(cudaStreamCreate(&stream));
60
#endif
T
Thunderbrook 已提交
61 62
    copy_streams_.push_back(stream);
    places_.push_back(place);
63 64 65 66 67
    gpuEvent_t event;
#ifdef PADDLE_WITH_HIP
    PADDLE_ENFORCE_CUDA_SUCCESS(
        hipEventCreateWithFlags(&event, hipEventDisableTiming));
#else
T
Thunderbrook 已提交
68 69
    PADDLE_ENFORCE_CUDA_SUCCESS(
        cudaEventCreateWithFlags(&event, cudaEventDisableTiming));
70
#endif
T
Thunderbrook 已提交
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
    events_.push_back(event);
#endif
#ifdef PADDLE_WITH_XPU
    platform::XPUPlace place = platform::XPUPlace(num);
    places_.push_back(place);
#endif
  }
  for (int i = 0; i < trainer_desc.downpour_param().stat_var_names_size();
       i++) {
    need_merge_var_names_.push_back(
        trainer_desc.downpour_param().stat_var_names(i));
  }
  VLOG(3) << "going to initialize pull dense worker";
  pull_dense_worker_ = PullDenseWorker::GetInstance();
  pull_dense_worker_->Initialize(trainer_desc);
  VLOG(3) << "initialize pull dense worker";
  SetDebug(trainer_desc.debug());
  fleet_ptr_ = FleetWrapper::GetInstance();
  trainer_desc_ = trainer_desc;
  workers_.resize(place_num);
  for (int i = 0; i < place_num; ++i) {
    workers_[i] = DeviceWorkerFactory::CreateDeviceWorker(
        trainer_desc.device_worker_name());
    workers_[i]->SetDeviceIndex(i);
    workers_[i]->SetDataFeed(readers[i]);
    workers_[i]->Initialize(trainer_desc);
    workers_[i]->SetWorkerNum(place_num);
  }
}

void HeterBoxTrainer::DumpWork(int tid) {}

void HeterBoxTrainer::RegisterHeterCallback() {
  auto fleet_ptr = FleetWrapper::GetInstance();
  fleet_ptr->RegisterHeterCallback([this](int worker, int taskid) {
    // workers_[worker]->Schedule(taskid);
  });
}

void HeterBoxTrainer::InitTrainerEnv(const ProgramDesc& main_program,
                                     const platform::Place& place) {
  for (size_t i = 0; i < places_.size(); ++i) {
    workers_[i]->SetPlace(places_[i]);
    workers_[i]->SetStream(copy_streams_[i]);
    workers_[i]->SetEvent(events_[i]);
    workers_[i]->SetReaderPlace(platform::CPUPlace());
    workers_[i]->SetRootScope(root_scope_);
    workers_[i]->CreateDeviceResource(main_program);  // Program
    workers_[i]->BindingDataFeedMemory();
#ifdef PADDLE_WITH_PSLIB
    workers_[i]->CacheProgram(main_program);
#endif
  }
  for (size_t num = 0; num < places_.size(); ++num) {
    auto place = places_[num];
    Scope* scope = workers_[num]->GetThreadScope();
    auto stream = copy_streams_[num];
    auto event = events_[num];
    auto dev_id = BOOST_GET_CONST(platform::CUDAPlace, place).device;
    platform::CUDADeviceGuard guard(dev_id);
    auto& block = main_program.Block(0);
    for (auto& var : block.AllVars()) {
      if (var->Persistable()) {
        auto name = var->Name();
        Variable* root_var = root_scope_->FindVar(name);
        if (!root_var) {
          continue;
        }
        LoDTensor* root_tensor = root_var->GetMutable<LoDTensor>();
        auto* ptr = scope->Var(name);
        InitializeVariable(ptr, proto::VarType::LOD_TENSOR);
        LoDTensor* thread_tensor = ptr->GetMutable<LoDTensor>();

#define HeterMemcpyFunc(cpp_type, proto_type)                           \
  do {                                                                  \
    if (root_tensor->type() == proto_type) {                            \
      HeterMemCpy<cpp_type>(thread_tensor, root_tensor, place, stream); \
    }                                                                   \
  } while (0)
        _ForEachDataType_(HeterMemcpyFunc);
      }
    }
153 154 155 156
#ifdef PADDLE_WITH_HIP
    PADDLE_ENFORCE_CUDA_SUCCESS(hipEventRecord(event, stream));
    hipEventSynchronize(event);
#else
T
Thunderbrook 已提交
157 158
    PADDLE_ENFORCE_CUDA_SUCCESS(cudaEventRecord(event, stream));
    cudaEventSynchronize(event);
159
#endif
T
Thunderbrook 已提交
160 161 162 163 164 165 166 167
  }
  place_ = place;
}

template <typename T>
void HeterBoxTrainer::HeterMemCpy(LoDTensor* thread_tensor,
                                  LoDTensor* root_tensor,
                                  const paddle::platform::Place& thread_place,
168
                                  gpuStream_t stream) {
T
Thunderbrook 已提交
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
  T* thread_ptr =
      thread_tensor->mutable_data<T>(root_tensor->dims(), thread_place);
  T* root_ptr = root_tensor->data<T>();
  if (platform::is_cpu_place(root_tensor->place())) {
    memory::Copy(BOOST_GET_CONST(platform::CUDAPlace, thread_place), thread_ptr,
                 platform::CPUPlace(), root_ptr,
                 sizeof(T) * root_tensor->numel(), stream);
  } else {
    memory::Copy(BOOST_GET_CONST(platform::CUDAPlace, thread_place), thread_ptr,
                 BOOST_GET_CONST(platform::CUDAPlace, root_tensor->place()),
                 root_ptr, sizeof(T) * root_tensor->numel(), stream);
  }
}

void HeterBoxTrainer::InitOtherEnv(const ProgramDesc& main_program) {
  pull_dense_worker_->SetRootScope(root_scope_);
  pull_dense_worker_->CreatePinVar();
  for (size_t i = 0; i < places_.size(); ++i) {
    pull_dense_worker_->AddThreadScope(workers_[i]->GetThreadScope());
    pull_dense_worker_->AddPlace(places_[i]);
189
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
T
Thunderbrook 已提交
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
    pull_dense_worker_->AddStream(copy_streams_[i]);
#endif
  }
  VLOG(3) << "init other env done.";
}

void HeterBoxTrainer::Run() {
  int pull_thread_num = 3 * places_.size();
  for (size_t thidx = 0; thidx < places_.size(); ++thidx) {
    workers_[thidx]->device_reader_->Start();
    std::dynamic_pointer_cast<paddle::framework::HeterBoxWorker>(
        workers_[thidx])
        ->ResetStat();
  }
  for (int i = 0; i < pull_thread_num; ++i) {
    int worker_id = i % places_.size();
    pull_threads_.push_back(
        std::thread(&DeviceWorker::ProduceTasks, workers_[worker_id].get()));
  }
  for (size_t thidx = 0; thidx < places_.size(); ++thidx) {
    threads_.push_back(
        std::thread(&DeviceWorker::TrainFiles, workers_[thidx].get()));
  }
}

template <typename T>
void HeterBoxTrainer::MergeToRootScope(LoDTensor* root_tensor,
                                       LoDTensor* tensor) {
  LoDTensor tmp_root;
  TensorCopy(*root_tensor, platform::CPUPlace(), &tmp_root);
  T* tmp_root_data = tmp_root.data<T>();
  LoDTensor tmp_tensor;
  TensorCopy(*tensor, platform::CPUPlace(), &tmp_tensor);
  T* data = tmp_tensor.data<T>();
  for (int i = 0; i < tmp_tensor.numel(); i++) {
    tmp_root_data[i] += data[i];
  }
  TensorCopy(tmp_root, platform::CPUPlace(), root_tensor);
}

Scope* HeterBoxTrainer::GetWorkerScope(int thread_id) { return nullptr; }

void HeterBoxTrainer::Finalize() {
  for (auto& th : pull_threads_) {
    th.join();
  }
  for (auto& th : threads_) {
    th.join();
  }
  for (size_t i = 0; i < need_merge_var_names_.size(); i++) {
    Variable* root_var = root_scope_->FindVar(need_merge_var_names_[i]);
    if (root_var == nullptr) {
      continue;
    }
    LoDTensor* root_tensor = root_var->GetMutable<LoDTensor>();

    for (size_t j = 0; j < places_.size(); j++) {
      Scope* cur_thread_scope = workers_[j]->GetThreadScope();
      Variable* thread_var =
          cur_thread_scope->FindVar(need_merge_var_names_[i]);
      if (thread_var == nullptr) {
        continue;
      }
      LoDTensor* thread_tensor = thread_var->GetMutable<LoDTensor>();
#define MergeCallback(cpp_type, proto_type)                                    \
  do {                                                                         \
    if (root_tensor->type() == proto_type) {                                   \
      if (thread_tensor->type() != proto_type) {                               \
        VLOG(0) << "Error: thread id=" << j << ", need_merge_var_names_[" << i \
                << "] " << need_merge_var_names_[i]                            \
                << ", root tensor type=" << root_tensor->type()                \
                << ", thread tensor type=" << thread_tensor->type();           \
        exit(-1);                                                              \
      }                                                                        \
      MergeToRootScope<cpp_type>(root_tensor, thread_tensor);                  \
    }                                                                          \
  } while (0)
      _ForEachDataType_(MergeCallback);
    }
  }
  pull_dense_worker_->MergeDenseParam();
  root_scope_->DropKids();
}
}  // namespace framework
}  // namespace paddle
#endif