unpooling.cu 5.7 KB
Newer Older
S
sweetsky0901 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 paddlepaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

S
sweetsky0901 已提交
15
#include "paddle/operators/math/unpooling.h"
S
sweetsky0901 已提交
16 17 18 19 20
#include "paddle/platform/cuda_helper.h"

namespace paddle {
namespace operators {
namespace math {
S
sweetsky0901 已提交
21
template <typename T>
S
sweetsky0901 已提交
22
__global__ void KernelUnpool2dMax(const int nthreads, const T* input_data,
S
sweetsky0901 已提交
23
                                  const int* indices_data,
S
sweetsky0901 已提交
24
                                  const int input_height, const int input_width,
S
sweetsky0901 已提交
25 26 27
                                  const int channels, T* output_data,
                                  const int output_height,
                                  const int output_width) {
S
sweetsky0901 已提交
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
  int in_n_stride = input_height * input_width * channels;
  int in_c_stride = input_height * input_width;
  int out_n_stride = output_height * output_width * channels;
  int out_c_stride = output_height * output_width;
  int index = blockIdx.x * blockDim.x + threadIdx.x;
  int offset = blockDim.x * gridDim.x;
  for (int i = index; i < nthreads; i += offset) {
    int bidx = i / in_n_stride;
    int boffset = i % in_n_stride;
    int cidx = boffset / in_c_stride;
    int out_offset = bidx * out_n_stride + cidx * out_c_stride;
    int out_index = indices_data[i];
    PADDLE_ASSERT(out_index < out_c_stride);
    output_data[out_offset + out_index] = input_data[i];
  }
S
sweetsky0901 已提交
43
}
S
sweetsky0901 已提交
44
template <typename T>
S
sweetsky0901 已提交
45 46 47 48 49
__global__ void KernelUnpool2dMaxGrad(
    const int nthreads, const T* input_data, const int* indices_data,
    const int input_height, const int input_width, const int channels,
    const T* output_data, const T* output_grad, const int output_height,
    const int output_width, T* input_grad) {
S
sweetsky0901 已提交
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
  int in_n_stride = input_height * input_width * channels;
  int in_c_stride = input_height * input_width;
  int out_n_stride = output_height * output_width * channels;
  int out_c_stride = output_height * output_width;
  int index = blockIdx.x * blockDim.x + threadIdx.x;
  int offset = blockDim.x * gridDim.x;
  for (int i = index; i < nthreads; i += offset) {
    int bidx = i / in_n_stride;
    int boffset = i % in_n_stride;
    int cidx = boffset / in_c_stride;
    int out_offset = bidx * out_n_stride + cidx * out_c_stride;
    int out_index = indices_data[i];
    PADDLE_ASSERT(out_index < out_c_stride);
    input_grad[i] = output_grad[out_offset + out_index];
  }
S
sweetsky0901 已提交
65 66 67 68
}
/*
 * All tensors are in NCHW format.
 */
S
sweetsky0901 已提交
69 70
template <typename T>
class Unpool2dMaxFunctor<platform::GPUPlace, T> {
S
sweetsky0901 已提交
71
 public:
S
sweetsky0901 已提交
72
  void operator()(const platform::DeviceContext& context,
S
sweetsky0901 已提交
73 74
                  const framework::Tensor& input,
                  const framework::Tensor& indices, framework::Tensor* output) {
S
sweetsky0901 已提交
75 76 77 78 79 80 81
    const int batch_size = input.dims()[0];
    const int input_height = input.dims()[2];
    const int input_width = input.dims()[3];
    const int output_channels = output->dims()[1];
    const int output_height = output->dims()[2];
    const int output_width = output->dims()[3];
    const T* input_data = input.data<T>();
S
sweetsky0901 已提交
82
    const int* indices_data = indices.data<int>();
S
sweetsky0901 已提交
83
    T* output_data = output->mutable_data<T>(context.GetPlace());
84
    int threads = 1024;
S
sweetsky0901 已提交
85
    int grid = (input.numel() + threads - 1) / threads;
S
sweetsky0901 已提交
86 87
    KernelUnpool2dMax<
        T><<<grid, threads, 0,
S
sweetsky0901 已提交
88 89 90 91
             reinterpret_cast<const platform::CUDADeviceContext&>(context)
                 .stream()>>>(input.numel(), input_data, indices_data,
                              input_height, input_width, output_channels,
                              output_data, output_height, output_width);
S
sweetsky0901 已提交
92 93 94 95 96
  }
};
/*
 * All tensors are in NCHW format.
 */
S
sweetsky0901 已提交
97 98
template <typename T>
class Unpool2dMaxGradFunctor<platform::GPUPlace, T> {
S
sweetsky0901 已提交
99
 public:
S
sweetsky0901 已提交
100 101
  void operator()(const platform::DeviceContext& context,
                  const framework::Tensor& input,
S
sweetsky0901 已提交
102
                  const framework::Tensor& indices,
S
sweetsky0901 已提交
103
                  const framework::Tensor& output,
S
sweetsky0901 已提交
104
                  const framework::Tensor& output_grad,
S
sweetsky0901 已提交
105
                  framework::Tensor* input_grad) {
S
sweetsky0901 已提交
106 107 108 109 110 111 112
    const int batch_size = input.dims()[0];
    const int input_height = input.dims()[2];
    const int input_width = input.dims()[3];
    const int output_channels = output.dims()[1];
    const int output_height = output.dims()[2];
    const int output_width = output.dims()[3];
    const T* input_data = input.data<T>();
S
sweetsky0901 已提交
113
    const int* indices_data = indices.data<int>();
S
sweetsky0901 已提交
114 115 116
    const T* output_data = output.data<T>();
    const T* output_grad_data = output_grad.data<T>();
    T* input_grad_data = input_grad->mutable_data<T>(context.GetPlace());
117
    int threads = 1024;
S
sweetsky0901 已提交
118
    int grid = (input.numel() + threads - 1) / threads;
S
sweetsky0901 已提交
119 120
    KernelUnpool2dMaxGrad<
        T><<<grid, threads, 0,
S
sweetsky0901 已提交
121 122 123 124 125
             reinterpret_cast<const platform::CUDADeviceContext&>(context)
                 .stream()>>>(input.numel(), input_data, indices_data,
                              input_height, input_width, output_channels,
                              output_data, output_grad_data, output_height,
                              output_width, input_grad_data);
S
sweetsky0901 已提交
126 127
  }
};
S
sweetsky0901 已提交
128 129 130 131
template class Unpool2dMaxGradFunctor<platform::GPUPlace, float>;
template class Unpool2dMaxGradFunctor<platform::GPUPlace, double>;
template class Unpool2dMaxFunctor<platform::GPUPlace, float>;
template class Unpool2dMaxFunctor<platform::GPUPlace, double>;
S
sweetsky0901 已提交
132 133 134
}  // namespace math
}  // namespace operators
}  // namespace paddle