container.py 9.8 KB
Newer Older
Y
Youwei Song 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from collections import OrderedDict
S
songyouwei 已提交
16
from ..framework import Parameter
Y
Youwei Song 已提交
17 18
from .layers import Layer

S
songyouwei 已提交
19 20 21
__all__ = [
    'Sequential',
    'ParameterList',
22
    'LayerList',
S
songyouwei 已提交
23
]
Y
Youwei Song 已提交
24 25 26 27 28 29 30 31


class Sequential(Layer):
    """Sequential container.
    Sub layers will be added to this container in the order of argument in the constructor.
    The argument passed to the constructor can be iterable Layers or iterable name Layer pairs.

    Parameters:
S
songyouwei 已提交
32
        *layers(tuple): Layers or iterable name Layer pairs.
Y
Youwei Song 已提交
33 34 35 36

    Examples:
        .. code-block:: python

37
            import paddle
Y
Youwei Song 已提交
38 39 40
            import numpy as np

            data = np.random.uniform(-1, 1, [30, 10]).astype('float32')
41 42 43 44 45 46 47
            data = paddle.to_tensor(data)
            # create Sequential with iterable Layers
            model1 = paddle.nn.Sequential(
                paddle.nn.Linear(10, 1), paddle.nn.Linear(1, 2)
            )
            model1[0]  # access the first layer
            res1 = model1(data)  # sequential execution
Y
Youwei Song 已提交
48

49 50 51 52 53 54 55 56
            # create Sequential with name Layer pairs
            model2 = paddle.nn.Sequential(
                ('l1', paddle.nn.Linear(10, 2)),
                ('l2', paddle.nn.Linear(2, 3))
            )
            model2['l1']  # access l1 layer
            model2.add_sublayer('l3', paddle.nn.Linear(3, 3))  # add sublayer
            res2 = model2(data)  # sequential execution
Y
Youwei Song 已提交
57 58 59

    """

S
songyouwei 已提交
60 61
    def __init__(self, *layers):
        super(Sequential, self).__init__()
Y
Youwei Song 已提交
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
        if len(layers) > 0 and isinstance(layers[0], tuple):
            for name, layer in layers:
                self.add_sublayer(name, layer)
        else:
            for idx, layer in enumerate(layers):
                self.add_sublayer(str(idx), layer)

    def __getitem__(self, name):
        return self._sub_layers[str(name)]

    def __setitem__(self, name, layer):
        assert isinstance(layer, Layer)
        setattr(self, str(name), layer)

    def __delitem__(self, name):
        name = str(name)
        assert name in self._sub_layers
        del self._sub_layers[name]

    def __len__(self):
        return len(self._sub_layers)

    def forward(self, input):
        for layer in self._sub_layers.values():
            input = layer(input)
        return input
S
songyouwei 已提交
88 89 90 91 92 93 94 95 96 97 98 99 100


class ParameterList(Layer):
    """ParameterList Container.

    This container acts like a Python list, but parameters it contains will be properly added.

    Parameters:
        parameters (iterable, optional): Iterable Parameters to be added

    Examples:
        .. code-block:: python

101
            import paddle
S
songyouwei 已提交
102 103
            import numpy as np

104
            class MyLayer(paddle.nn.Layer):
S
songyouwei 已提交
105 106 107
                def __init__(self, num_stacked_param):
                    super(MyLayer, self).__init__()
                    # create ParameterList with iterable Parameters
108 109
                    self.params = paddle.nn.ParameterList(
                        [paddle.create_parameter(
S
songyouwei 已提交
110 111 112 113 114 115 116 117 118 119 120
                            shape=[2, 2], dtype='float32')] * num_stacked_param)

                def forward(self, x):
                    for i, p in enumerate(self.params):
                        tmp = self._helper.create_variable_for_type_inference('float32')
                        self._helper.append_op(
                            type="mul",
                            inputs={"X": x,
                                    "Y": p},
                            outputs={"Out": tmp},
                            attrs={"x_num_col_dims": 1,
121
                                    "y_num_col_dims": 1})
S
songyouwei 已提交
122 123 124 125
                        x = tmp
                    return x

            data_np = np.random.uniform(-1, 1, [5, 2]).astype('float32')
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
            x = paddle.to_tensor(data_np)
            num_stacked_param = 4
            model = MyLayer(num_stacked_param)
            print(len(model.params))  # 4
            res = model(x)
            print(res.shape)  # [5, 2]

            replaced_param = paddle.create_parameter(shape=[2, 3], dtype='float32')
            model.params[num_stacked_param - 1] = replaced_param  # replace last param
            res = model(x)
            print(res.shape)  # [5, 3]
            model.params.append(paddle.create_parameter(shape=[3, 4], dtype='float32'))  # append param
            print(len(model.params))  # 5
            res = model(x)
            print(res.shape)  # [5, 4]
S
songyouwei 已提交
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
    """

    def __init__(self, parameters=None):
        super(ParameterList, self).__init__()
        if parameters is not None:
            for idx, param in enumerate(parameters):
                assert isinstance(param, Parameter)
                self.add_parameter(str(idx), param)

    def __getitem__(self, idx):
        return self._parameters[str(idx)]

    def __setitem__(self, idx, param):
        assert isinstance(param, Parameter)
        setattr(self, str(idx), param)

    def __len__(self):
        return len(self._parameters)

    def __iter__(self):
        return iter(self._parameters.values())

    def append(self, parameter):
        """Appends a given parameter at the end of the list.

        Parameters:
            parameter (Parameter): parameter to append
        """
        idx = len(self._parameters)
        self.add_parameter(str(idx), parameter)
        return self
172 173 174 175 176 177 178 179 180 181 182 183


class LayerList(Layer):
    """
    LayerList holds sublayers, and sublayers it contains are properly registered.
    Holded sublayers can be indexed like a regular python list.

    Parameters:
        sublayers (iterable of Layer, optional): sublayers to hold

    Examples:
        .. code-block:: python
184 185

            import paddle
186 187
            import numpy as np

188
            class MyLayer(paddle.nn.Layer):
189 190
                def __init__(self):
                    super(MyLayer, self).__init__()
191 192
                    self.linears = paddle.nn.LayerList(
                        [paddle.nn.Linear(10, 10) for i in range(10)])
193 194 195 196 197 198 199 200 201 202

                def forward(self, x):
                    # LayerList can act as an iterable, or be indexed using ints
                    for i, l in enumerate(self.linears):
                        x = self.linears[i // 2](x) + l(x)
                    return x
    """

    def __init__(self, sublayers=None):
        super(LayerList, self).__init__()
203 204 205
        if sublayers is not None:
            for idx, layer in enumerate(sublayers):
                self.add_sublayer(str(idx), layer)
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237

    def __getitem__(self, idx):
        if isinstance(idx, slice):
            return self.__class__(list(self._sub_layers.values())[idx])
        else:
            return self._sub_layers[str(idx)]

    def __setitem__(self, idx, sublayer):
        return setattr(self, str(idx), sublayer)

    def __delitem__(self, idx):
        if isinstance(idx, slice):
            for k in range(len(self._sub_layers))[idx]:
                delattr(self, str(k))
        else:
            delattr(self, str(idx))
        str_indices = [str(i) for i in range(len(self._sub_layers))]
        self._sub_layers = OrderedDict(
            list(zip(str_indices, self._sub_layers.values())))

    def __len__(self):
        return len(self._sub_layers)

    def __iter__(self):
        return iter(self._sub_layers.values())

    def append(self, sublayer):
        """
        Appends a sublayer to the end of the list.

        Parameters:
            sublayer (Layer): sublayer to append
238 239 240 241

        Examples:
            .. code-block:: python

242 243 244 245 246 247
                import paddle

                linears = paddle.nn.LayerList([paddle.nn.Linear(10, 10) for i in range(10)])
                another = paddle.nn.Linear(10, 10)
                linears.append(another)
                print(len(linears))  # 11
248 249 250
        """
        self.add_sublayer(str(len(self)), sublayer)
        return self
251 252 253 254 255 256 257 258 259 260 261 262

    def insert(self, index, sublayer):
        """
        Insert a sublayer before a given index in the list.

        Parameters:
            index (int): index to insert.
            sublayer (Layer): sublayer to insert

        Examples:
            .. code-block:: python

263 264 265 266 267 268
                import paddle

                linears = paddle.nn.LayerList([paddle.nn.Linear(10, 10) for i in range(10)])
                another = paddle.nn.Linear(10, 10)
                linears.insert(3, another)
                print(linears[3] is another)  # True
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
        """
        assert isinstance(index, int) and \
               0 <= index < len(self._sub_layers), \
            "index should be an integer in range [0, len(self))"
        for i in range(len(self._sub_layers), index, -1):
            self._sub_layers[str(i)] = self._sub_layers[str(i - 1)]
        self._sub_layers[str(index)] = sublayer

    def extend(self, sublayers):
        """
        Appends sublayers to the end of the list.

        Parameters:
            sublayers (iterable of Layer): iterable of sublayers to append

        Examples:
            .. code-block:: python
286 287 288 289 290 291 292 293

                import paddle

                linears = paddle.nn.LayerList([paddle.nn.Linear(10, 10) for i in range(10)])
                another_list = paddle.nn.LayerList([paddle.nn.Linear(10, 10) for i in range(5)])
                linears.extend(another_list)
                print(len(linears))  # 15
                print(another_list[0] is linears[10])  # True
294 295 296 297 298 299
        """
        offset = len(self)
        for i, sublayer in enumerate(sublayers):
            idx = str(offset + i)
            self.add_sublayer(idx, sublayer)
        return self