truncated_gaussian_random_op.cc 4.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <limits>
#include <random>
17
#include <vector>
L
Leo Chen 已提交
18

19
#include "paddle/fluid/framework/generator.h"
20
#include "paddle/fluid/framework/op_registry.h"
21
#include "paddle/fluid/operators/truncated_gaussian_random_op.h"
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38

namespace paddle {
namespace operators {

template <typename T>
class CPUTruncatedGaussianRandomKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    float mean = context.Attr<float>("mean");
    float std = context.Attr<float>("std");
    auto* tensor = context.Output<framework::Tensor>("Out");
    T* data = tensor->mutable_data<T>(context.GetPlace());

    std::uniform_real_distribution<T> dist(std::numeric_limits<float>::min(),
                                           1.0);
    TruncatedNormal<T> truncated_normal(mean, std);
    int64_t size = tensor->numel();
39

L
Leo Chen 已提交
40 41 42 43
    unsigned int seed = static_cast<unsigned int>(context.Attr<int>("seed"));
    auto engine = framework::GetCPURandomEngine(seed);
    for (int64_t i = 0; i < size; ++i) {
      data[i] = truncated_normal(dist(*engine));
44 45 46 47 48 49 50 51 52
    }
  }
};

class TruncatedGaussianRandomOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
53 54 55 56
    PADDLE_ENFORCE_EQ(
        ctx->HasOutput("Out"), true,
        platform::errors::NotFound(
            "Output(Out) of TruncatedGaussianRandomOp should not be null."));
57 58 59 60 61 62
    auto shape = ctx->Attrs().Get<std::vector<int>>("shape");
    std::vector<int64_t> out_dim;
    out_dim.reserve(shape.size());
    for (auto dim : shape) {
      out_dim.push_back(static_cast<int64_t>(dim));
    }
63 64 65 66 67 68
    PADDLE_ENFORCE_GT(
        shape.size(), 0UL,
        platform::errors::InvalidArgument(
            "the input shape of TruncatedGaussianRandomOp must be set, "
            "But the rank of shape we received is %d",
            shape.size()));
69
    ctx->SetOutputDim("Out", pten::make_ddim(out_dim));
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    framework::LibraryType library{framework::LibraryType::kPlain};
    framework::DataLayout layout{framework::DataLayout::kAnyLayout};
    return framework::OpKernelType(
        static_cast<framework::proto::VarType::Type>(ctx.Attr<int>("dtype")),
        ctx.device_context(), layout, library);
  }
};

class TruncatedGaussianRandomOpMaker
    : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddOutput("Out", "Output tensor of truncated gaussian random op.");

    AddAttr<std::vector<int>>("shape",
                              "(vector<int>) "
                              "The dimension of random tensor.");
    AddAttr<float>("mean",
                   "(float, default 0.0) "
                   "mean of random tensor.")
        .SetDefault(.0f);
    AddAttr<float>("std",
                   "(float, default 1.0) "
                   "std of random tensor.")
        .SetDefault(1.0f);
    AddAttr<int>("seed",
                 "(int, default 0) "
                 "Random seed of generator."
                 "0 means use system wide seed."
                 "Note that if seed is not 0, this operator will always "
                 "generate the same random numbers every time.")
        .SetDefault(0);
    AddAttr<int>("dtype",
                 "(int, default 5(FP32)) "
                 "Output data type.")
        .SetDefault(framework::proto::VarType::FP32);
    AddComment(R"DOC(
TruncatedGaussianRandom Operator.

Used to initialize tensors with truncated gaussian random generator.

)DOC");
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP_WITHOUT_GRADIENT(truncated_gaussian_random,
                             ops::TruncatedGaussianRandomOp,
                             ops::TruncatedGaussianRandomOpMaker);
REGISTER_OP_CPU_KERNEL(truncated_gaussian_random,
                       ops::CPUTruncatedGaussianRandomKernel<float>);