DataProvider.cpp 11.9 KB
Newer Older
Z
zhangjinchao01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */


#include "DataProvider.h"

#include "paddle/utils/Util.h"
#include "paddle/utils/StringUtil.h"
#include "paddle/utils/Logging.h"
#include <algorithm>
#include <unistd.h>
#include "ProtoDataProvider.h"

namespace paddle {

void BufferBatch::swap(BufferBatch* bufBatch) {
  DataBatch* batchData = bufBatch->getDataBatch();
  hl_event_t hlEvent = bufBatch->getCuEvent();
  hl_stream_t hlStream = bufBatch->getCuStream();
  bufBatch->setDataBatch(batchData_);
  bufBatch->setCuStream(hlStream_);
  bufBatch->setCuEvent(hlEvent_);

  batchData_ = batchData;
  hlEvent_ = hlEvent;
  hlStream_ = hlStream;
}

void BufferBatch::clone(DataBatch* srcBatch, bool useGpu) {
  if (batchData_ == NULL) {
    batchData_ = new DataBatch();
  }
  std::vector<Argument>& destData = batchData_->getStreams();
  int numStreams = srcBatch->getNumStreams();
  destData.resize(numStreams);
  batchData_->setSize(srcBatch->getSize());
  if (useGpu) {
    createCuEvent();
  }

  for (int i = 0; i < numStreams; i++) {
    destData[i].resizeAndCopyFrom(srcBatch->getStream(i), useGpu, hlStream_);
  }
  if (useGpu) {
    hl_stream_record_event(hlStream_, hlEvent_);
  }
}

60 61
DoubleBuffer::DoubleBuffer(DataProvider *dataPool,
                           bool useGpu,
Z
zhangjinchao01 已提交
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
                           int64_t batchSize) {
  batchSize_ = batchSize;
  dataPool_ = dataPool;
  useGpu_ = useGpu;
  dataQueue_ = new BufferBatchQueue();
  bufferQueue_ = new BufferBatchQueue();

  // insert a empty buffer
  bufferQueue_->enqueue(new BufferBatch());
  stopping_ = false;
  pending_ = true;
}

DoubleBuffer::~DoubleBuffer() {
  finishAsyncLoad();
  while (dataQueue_->size()) {
    BufferBatch* dataBtch = dataQueue_->dequeue();
    delete dataBtch;
    dataBtch = NULL;
  }
  while (bufferQueue_->size()) {
    BufferBatch* bufBtch = bufferQueue_->dequeue();
    delete bufBtch;
    bufBtch = NULL;
  }
  delete dataQueue_;
  dataQueue_ = NULL;
  delete bufferQueue_;
  bufferQueue_ = NULL;
}

void DoubleBuffer::removeOneBatch(DataBatch* dataBatch) {
  // get data
  BufferBatch* batch = dataQueue_->dequeue();
  batch->syncEvent();  // when use GPU, need synchronized with the cuEvent
  *dataBatch = *(batch->getDataBatch());

  // push anothor buffer
  if (*usingBatch_ == nullptr) {
    *usingBatch_ = std::make_shared<BufferBatch>();
  }

  // Mark the using-batch
  batch->swap((*usingBatch_).get());
  bufferQueue_->enqueue(batch);

  if (0 == dataBatch->getSize()) {
    setPending(true);
  }
}

void DoubleBuffer::insertOneBatch(DataBatch* batch) {
114 115 116
  while (!bufferQueue_->waitNotEmptyFor(2 /* seconds */)) {  // time out
    if (stopping_) return;
  }
Z
zhangjinchao01 已提交
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
  BufferBatch* bufBatch = bufferQueue_->dequeue();
  // clone and copy the data from an Threadlocal Variable
  bufBatch->clone(batch, useGpu_);
  dataQueue_->enqueue(bufBatch);
}

void DoubleBuffer::asyncLoadBatch() {
  int64_t actualSize = 0;
  if (useGpu_) {
    hl_set_device(FLAGS_gpu_id);
  }
  setPending(false);

  while (true) {
    taskReadySem_.wait();
    if (stopping_) break;

    while (batchSize_ == 0) {
      usleep(5);
    }

    do {
      DataBatch newBatch;
      {
        REGISTER_TIMER("getNextBatchInternal");
        actualSize = dataPool_->getNextBatchInternal(batchSize_, &newBatch);
      }
      insertOneBatch(&newBatch);
145
    } while (actualSize > 0 && !stopping_);
Z
zhangjinchao01 已提交
146 147 148 149 150 151 152 153 154 155
  }
}

void DoubleBuffer::startAsyncLoad() {
  if (asyncLoader_ == nullptr) {
    asyncLoader_.reset(new std::thread([this]() { this->asyncLoadBatch(); }));
  }
  taskReadySem_.post();
}

156 157 158 159 160 161 162
ClassRegistrar<DataProvider, DataConfig, ModelConfig, bool>
DataProvider::registrar_;

DataProvider* DataProvider::create(const DataConfig& config,
                                   const ModelConfig& modelConfig,
                                   bool useGpu) {
  return registrar_.createByType(config.type(), config, modelConfig, useGpu);
Z
zhangjinchao01 已提交
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406
}

REGISTER_DATA_PROVIDER(simple, SimpleDataProvider);
REGISTER_DATA_PROVIDER(dummy, DummyDataProvider);
REGISTER_DATA_PROVIDER(proto, ProtoDataProvider);
REGISTER_DATA_PROVIDER(proto_sequence, ProtoSequenceDataProvider);

int64_t DataProvider::getNextBatch(int64_t size, DataBatch* batch) {
  int64_t batchSize = doubleBuffer_ ? getNextBatchFromBuffer(size, batch)
                                    : getNextBatchInternal(size, batch);

  if (!batchSize) return 0;

  if (!config_.constant_slots_size()) return batchSize;

  auto& constantSlots = *constantSlots_;
  constantSlots.resize(config_.constant_slots_size());

  for (int i = 0; i < config_.constant_slots_size(); ++i) {
    MemoryHandlePtr handle =
        constantSlots[i] ? constantSlots[i]->getMemoryHandle() : nullptr;
    Matrix::resizeOrCreate(constantSlots[i], batchSize,
                           1,         // = width
                           false,     // = trans
                           useGpu_);  // = useGpu
    if (handle != constantSlots[i]->getMemoryHandle()) {
      // memory buf was reallocated. We need to initialize the value
      constantSlots[i]->assign(config_.constant_slots(i));
    }
    batch->appendData(constantSlots[i],
                      batch->getStream(0).sequenceStartPositions);
  }

  return batchSize;
}

int64_t DataProvider::getNextBatchFromBuffer(int64_t size, DataBatch* batch) {
  CHECK(doubleBuffer_ != nullptr);

  if (doubleBuffer_->getBatchSize() != size) {
    doubleBuffer_->setBatchSize(size);
  }

  doubleBuffer_->removeOneBatch(batch);
  return batch->getSize();
}

void DataProvider::initAsyncLoader() {
  if (doubleBuffer_ == nullptr) {
    doubleBuffer_.reset(new DoubleBuffer(this, useGpu_));
  }
  useGpu_ = false;  // Avoid D2D copy, it will delay the computing performance
}

SimpleDataProviderBase::SimpleDataProviderBase(const DataConfig& config,
                                               bool useGpu, bool withInfo)
    : DataProvider(config, useGpu) {
  /* initialize the size of a sample, and the buffer */
  sampleDim_ = config_.feat_dim() * (2 * config_.context_len() + 1);
  bufferCapacity_ = config_.buffer_capacity();
  withInfo_ = withInfo;
  sampleNumInBuf_ = 0;
  nextItemIndex_ = 0;

  /* malloc buffer in cpu */
  hInputDataBuf_ = std::make_shared<CpuMatrix>(bufferCapacity_, sampleDim_);
  hInputLabelBuf_ = std::make_shared<CpuIVector>(bufferCapacity_);
  hInputInfoBuf_ = std::make_shared<CpuIVector>(bufferCapacity_);
}

void SimpleDataProviderBase::shuffle() {
  int i, t;
  int len = sampleNumInBuf_;
  std::vector<real> temp(sampleDim_);
  real* data = hInputDataBuf_->getData();
  int* label = hInputLabelBuf_->getData();
  int* info = hInputInfoBuf_->getData();
  int sampleSz = sizeof(real) * sampleDim_;
  for (i = 0; i < len; i++) {
    int randNum = rand();  // NOLINT TODO(yuyang18): Use rand_r instead?
    t = randNum % (len - i) + i;
    // swap
    if (i != t) {
      // swap data
      memcpy(&temp[0], &data[i * sampleDim_], sampleSz);
      memcpy(&data[i * sampleDim_], &data[t * sampleDim_], sampleSz);
      memcpy(&data[t * sampleDim_], &temp[0], sampleSz);
      std::swap(label[i], label[t]);
      if (withInfo_) {
        std::swap(info[i], info[t]);
      }
    }
  }
}

int64_t SimpleDataProviderBase::getNextBatchInternal(int64_t size,
                                                     DataBatch* batch) {
  CHECK(batch != NULL);
  batch->clear();

  int64_t startIndex;
  int64_t cpySize;

  std::lock_guard<RWLock> guard(lock_);
  if (sampleNumInBuf_ - nextItemIndex_ < size) {
    int64_t n = fillBuffer();
    VLOG(1) << "fillBuffer return " << n << " samples.\n";
  }

  startIndex = nextItemIndex_;
  cpySize = std::min(size, sampleNumInBuf_ - nextItemIndex_);
  nextItemIndex_ += cpySize;

  if (cpySize > 0) {
    real* data = hInputDataBuf_->getData() + startIndex * sampleDim_;
    int* label = hInputLabelBuf_->getData() + startIndex;
    int* info = hInputInfoBuf_->getData() + startIndex;

    MatrixPtr& dataBatch = *dataBatch_;     // get the thread local object
    IVectorPtr& labelBatch = *labelBatch_;  // get the thread local object
    IVectorPtr& infoBatch = *infoBatch_;    // get the thread local object
    if (!dataBatch) {
      dataBatch = Matrix::create(cpySize, sampleDim_, false, useGpu_);
      labelBatch = IVector::create(cpySize, useGpu_);
      if (withInfo_) {
        infoBatch = IVector::create(cpySize, 0);
      }
    } else {
      dataBatch->resize(cpySize, sampleDim_);
      labelBatch->resize(cpySize);
      if (withInfo_) {
        infoBatch->resize(cpySize);
      }
    }
    dataBatch->copyFrom(data, cpySize * sampleDim_);
    labelBatch->copyFrom(label, cpySize);
    batch->appendData(dataBatch);
    batch->appendLabel(labelBatch);
    if (withInfo_) {
      infoBatch->copyFrom(info, cpySize);
      batch->appendLabel(infoBatch);
    }
  }

  batch->setSize(cpySize);
  return cpySize;
}

void SimpleDataProviderBase::reset() {
  sampleNumInBuf_ = 0;
  nextItemIndex_ = 0;
  DataProvider::reset();
}

int64_t SimpleDataProviderBase::getSize() {
  LOG(FATAL) << "Currently, not implemented";
  return 0;
}

int64_t SimpleDataProviderBase::fillBuffer() {
  int64_t n = sampleNumInBuf_ - nextItemIndex_;

  /* flash the remaining data to the beginning of the buffer */
  if (n > 0) {
    hInputDataBuf_->copyFrom(
        hInputDataBuf_->getData() + nextItemIndex_ * sampleDim_,
        n * sampleDim_);
    hInputLabelBuf_->copyFrom(hInputLabelBuf_->getData() + nextItemIndex_, n);
    if (withInfo_) {
      hInputInfoBuf_->copyFrom(hInputInfoBuf_->getData() + nextItemIndex_, n);
    }
  }

  sampleNumInBuf_ =
      n + fillBufferImp(hInputDataBuf_->getData() + n * sampleDim_,
                        hInputLabelBuf_->getData() + n,
                        hInputInfoBuf_->getData() + n, bufferCapacity_ - n);

  /* for stachastic gradient training */
  if (!skipShuffle_) {
    shuffle();
  }

  nextItemIndex_ = 0;

  return sampleNumInBuf_;
}

SimpleDataProvider::SimpleDataProvider(const DataConfig& config, bool useGpu)
    : SimpleDataProviderBase(config, useGpu, /* withInfo= */ false),
      currentSampleIndex_(0) {
  loadData(config_.files());
}

SimpleDataProvider::~SimpleDataProvider() {}

int64_t SimpleDataProvider::fillBufferImp(real* data, int* label, int* info,
                                          int64_t size) {
  (void)info;
  int64_t n = std::min<int64_t>(labels_.size() - currentSampleIndex_, size);
  memcpy(data, &data_[currentSampleIndex_ * sampleDim_],
         n * sampleDim_ * sizeof(real));
  memcpy(label, &labels_[currentSampleIndex_], sizeof(int) * n);
  currentSampleIndex_ += n;

  return n;
}

void SimpleDataProvider::reset() {
  currentSampleIndex_ = 0;
  SimpleDataProviderBase::reset();
}

void SimpleDataProvider::loadData(const std::string& fileName) {
  std::ifstream is(fileName);
  CHECK(is) << "Fail to open " << fileName;
  std::string line;
  while (is) {
    if (!getline(is, line)) break;
    LOG(INFO) << "load data file " << line;
    loadDataFile(line);
  }
  LOG(INFO) << "read done, num of instance=" << labels_.size()
            << " data size=" << data_.size();
}

void SimpleDataProvider::loadDataFile(const std::string& fileName) {
  std::ifstream is(fileName);
  std::string line;
  std::vector<std::string> pieces;
  while (is) {
    if (!getline(is, line)) break;
    str::split(line, ' ', &pieces);
    CHECK_EQ((uint64_t)(sampleDim_ + 1), pieces.size())
        << " Dimension mismatch, " << pieces.size() - 1 << " in " << fileName
        << " " << sampleDim_ << " from config";
    labels_.push_back(atoi(pieces[0].c_str()));
    for (int i = 0; i < sampleDim_; ++i) {
      data_.push_back(atof(pieces[i + 1].c_str()));
    }
  }
}

}  // namespace paddle