fused_transformer.py 29.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15 16 17 18
from paddle.nn import functional as F
from paddle.incubate.nn import functional as incubate_f
from paddle.nn import Layer
from paddle.framework import ParamAttr
import paddle
19
from paddle.nn.layer.transformer import _convert_attention_mask, _convert_param_attr_to_list
20 21 22 23
from paddle.nn.initializer import Constant

import collections

24 25 26

class FusedMultiHeadAttention(Layer):
    """
27
    Attention mapps queries and a set of key-value pairs to outputs, and
28 29 30 31
    Multi-Head Attention performs multiple parallel attention to jointly attending
    to information from different representation subspaces.
    Please refer to `Attention Is All You Need <https://arxiv.org/pdf/1706.03762.pdf>`_
    for more details.
32

33 34 35
    Parameters:
        embed_dim (int): The expected feature size in the input and output.
        num_heads (int): The number of heads in multi-head attention.
36
        dropout_rate (float, optional): The dropout probability used on attention
37
            weights to drop some attention targets for the dropout after attention.
38 39
            0 for no dropout. Default 0.5.
        attn_dropout_rate (float, optional): The dropout probability used on attention
40
            weights to drop some attention targets for the dropout in attention.
41
            0 for no dropout. Default 0.5.
42 43
        epsilon (float, optional): he small value added to the variance to prevent
            division by zero. Default: 1e-05.
44 45 46 47
        kdim (int, optional): The feature size in key. If None, assumed equal to
            `embed_dim`. Default None.
        vdim (int, optional): The feature size in value. If None, assumed equal to
            `embed_dim`. Default None.
48
        normalize_before (bool, optional): Indicate  whether it is pre_layer_norm
49
            (True) or post_layer_norm architecture (False). Default False.
50
        need_weights (bool, optional): Indicate whether to return the attention
51
            weights. Now, only False is supported. Default False.
52 53
        weight_attr(ParamAttr, optional):  To specify the weight parameter property.
            Default: None, which means the default weight parameter property is used.
54
            See usage for details in :code:`ParamAttr`.
55 56 57
        bias_attr (ParamAttr|bool, optional): To specify the bias parameter property.
            Default: None, which means the default bias parameter property is used.
            If it is set to False, this layer will not have trainable bias parameter.
58 59
            See usage for details in :code:`ParamAttr`.

60
    Examples:
61

62
        .. code-block:: python
63 64

            # required: gpu
65
            import paddle
66
            # input: [batch_size, sequence_length, embed_dim]
67 68 69
            query = paddle.rand((2, 4, 128))
            # self attention mask: [batch_size, num_heads, query_len, query_len]
            attn_mask = paddle.rand((2, 2, 4, 4))
70
            multi_head_attn = paddle.incubate.nn.FusedMultiHeadAttention(128, 2)
71 72 73 74 75 76
            output = multi_head_attn(query, None, None, attn_mask=attn_mask)  # [2, 4, 128]
    """

    def __init__(self,
                 embed_dim,
                 num_heads,
77 78
                 dropout_rate=0.5,
                 attn_dropout_rate=0.5,
79 80
                 kdim=None,
                 vdim=None,
81
                 normalize_before=False,
82 83
                 need_weights=False,
                 weight_attr=None,
84
                 bias_attr=None,
85
                 epsilon=1e-5,
86
                 name=None):
87
        super(FusedMultiHeadAttention, self).__init__()
88 89 90 91 92 93 94 95 96 97

        assert embed_dim > 0, ("Expected embed_dim to be greater than 0, "
                               "but recieved {}".format(embed_dim))
        assert num_heads > 0, ("Expected nhead to be greater than 0, "
                               "but recieved {}".format(num_heads))

        self.normalize_before = normalize_before
        self._dtype = self._helper.get_default_dtype()
        self._weight_attr = weight_attr
        self._bias_attr = bias_attr
98
        self._epsilon = epsilon
99

100 101
        self.embed_dim = embed_dim
        self.num_heads = num_heads
102
        self.head_dim = embed_dim // num_heads
103 104 105
        self.kdim = kdim
        self.vdim = vdim
        self.need_weights = need_weights
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
        assert self.head_dim * num_heads == embed_dim, "embed_dim must be divisible by num_heads"
        assert need_weights == False, "Only support need_weight is False now."

        self.qkv_weight = self.create_parameter(
            shape=[3, num_heads, self.head_dim, embed_dim],
            attr=self._weight_attr,
            dtype=self._dtype,
            is_bias=False)
        self.qkv_bias = self.create_parameter(
            shape=[3, num_heads, self.head_dim],
            attr=self._bias_attr,
            dtype=self._dtype,
            is_bias=True)
        self.linear_weight = self.create_parameter(
            shape=[embed_dim, embed_dim],
            attr=self._weight_attr,
            dtype=self._dtype,
            is_bias=False)
        self.linear_bias = self.create_parameter(
            shape=[embed_dim],
            attr=self._bias_attr,
            dtype=self._dtype,
            is_bias=True)

        self.pre_ln_scale = self.create_parameter(
            attr=self._weight_attr,
            shape=[embed_dim],
            default_initializer=Constant(value=1.0))
        self.pre_ln_bias = self.create_parameter(
            attr=self._bias_attr, shape=[embed_dim], is_bias=True)
        self.ln_scale = self.create_parameter(
            attr=self._weight_attr,
            shape=[embed_dim],
            default_initializer=Constant(value=1.0))
        self.ln_bias = self.create_parameter(
            attr=self._bias_attr, shape=[embed_dim], is_bias=True)

        self.dropout_rate = dropout_rate
        self.attn_dropout_rate = attn_dropout_rate

        self.name = name
147 148 149 150 151

    def forward(self, query, key=None, value=None, attn_mask=None, cache=None):
        """
        Applies multi-head attention to map queries and a set of key-value pairs
        to outputs.
152

153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
        Parameters:
            query (Tensor): The queries for multi-head attention. It is a
                tensor with shape `[batch_size, query_length, embed_dim]`. The
                data type should be float32 or float64.
            key (Tensor, optional): The keys for multi-head attention. It is
                a tensor with shape `[batch_size, key_length, kdim]`. The
                data type should be float32 or float64. If None, use `query` as
                `key`. Default None.
            value (Tensor, optional): The values for multi-head attention. It
                is a tensor with shape `[batch_size, value_length, vdim]`.
                The data type should be float32 or float64. If None, use `query` as
                `value`. Default None.
            attn_mask (Tensor, optional): A tensor used in multi-head attention
                to prevents attention to some unwanted positions, usually the
                paddings or the subsequent positions. It is a tensor with shape
                broadcasted to `[batch_size, n_head, sequence_length, sequence_length]`.
169 170 171 172 173
                When the data type is bool, the unwanted positions have `False`
                values and the others have `True` values. When the data type is
                int, the unwanted positions have 0 values and the others have 1
                values. When the data type is float, the unwanted positions have
                `-INF` values and the others have 0 values. It can be None when
174 175
                nothing wanted or needed to be prevented attention to. Default None.
            cache (MultiHeadAttention.Cache|MultiHeadAttention.StaticCache, optional):
176
                Now, only None is supported. Default None.
177

178 179
        Returns:
            Tensor|tuple: It is a tensor that has the same shape and data type \
180
                as `query`, representing attention output.
181
        """
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
        if attn_mask is not None:
            # Support bool or int mask
            attn_mask = _convert_attention_mask(attn_mask, query.dtype)

        assert cache == None, "Only support cache is None now."

        out = incubate_f.fused_multi_head_attention(
            x=query,
            qkv_weight=self.qkv_weight,
            linear_weight=self.linear_weight,
            pre_layer_norm=self.normalize_before,
            pre_ln_scale=self.pre_ln_scale,
            pre_ln_bias=self.pre_ln_bias,
            ln_scale=self.ln_scale,
            ln_bias=self.ln_bias,
197
            pre_ln_epsilon=self._epsilon,
198 199 200 201 202
            qkv_bias=self.qkv_bias,
            linear_bias=self.linear_bias,
            attn_mask=attn_mask,
            dropout_rate=self.dropout_rate,
            attn_dropout_rate=self.attn_dropout_rate,
203 204 205
            ln_epsilon=self._epsilon,
            training=self.training,
            name=self.name)
206
        return out
207

208 209 210 211 212 213 214
    def extra_repr(self):
        name_str = ', name={}'.format(self.name) if self.name else ''
        return 'embed_dim={}, num_heads={}, dropout_rate={}, attn_dropout_rate={}, epsilon={}, kdim={}, vdim={}, normalize_before={}, need_weights={}, dtype={}{}'.format(
            self.embed_dim, self.num_heads, self.dropout_rate,
            self.attn_dropout_rate, self._epsilon, self.kdim, self.vdim,
            self.normalize_before, self.need_weights, self._dtype, name_str)

215 216

class FusedFeedForward(Layer):
217 218 219 220 221 222
    """
    Parameters:
        d_model (int): The expected feature size in the input and output.
        dim_feedforward (int): The hidden layer size.
        dropout_rate (float, optional): The dropout probability used in pre-process
            and post-precess. Default 0.1
223 224
        epsilon (float, optional): he small value added to the variance to prevent
            division by zero. Default: 1e-05.
225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
        activation (str, optional): The activation function. Default relu.
        act_dropout_rate (float, optional): The dropout probability after activition.
            If None, use the value of `dropout_rate`. Default None
        normalize_before (bool, optional): Indicate whether to put layer normalization
            into, preprocessing or postprocessing. Default False
        weight_attr (ParamAttr, optional): The attribute for the learnable weight of this layer.
            The default value is None and the weight will be initialized to zero. For detailed
            information, please refer to paddle.ParamAttr.
        bias_attr (ParamAttr|bool, optional): The attribute for the learnable bias of thi layer.
            If it is set to False, no bias will be added to the output. If it is set to None or one
            kind of ParamAttr, a bias parameter will be created according to ParamAttr. For detailed
            information, please refer to paddle.ParamAttr. The default value is None and the bias
            will be initialized to zero.

    Examples:
        .. code-block:: python

            # required: gpu
            import paddle
            from paddle.incubate.nn import FusedFeedForward

            fused_feedforward_layer = FusedFeedForward(8, 8)
            x = paddle.rand((1, 8, 8))
            out = fused_feedforward_layer(x)
            print(out.numpy().shape)
            # (1, 8, 8)
    """

253 254 255
    def __init__(self,
                 d_model,
                 dim_feedforward,
256
                 dropout_rate=0.1,
257
                 epsilon=1e-05,
258
                 activation="relu",
259
                 act_dropout_rate=None,
260 261
                 normalize_before=False,
                 weight_attr=None,
262 263
                 bias_attr=None,
                 name=None):
264 265

        super(FusedFeedForward, self).__init__()
266 267 268 269 270 271 272 273 274 275 276 277 278 279
        assert d_model > 0, (
            "Expected d_model to be greater than 0, but recieved {}".format(
                d_model))
        assert dim_feedforward > 0, (
            "Expected dim_feedforward to be greater than 0, but recieved {}".
            format(dim_feedforward))

        self._dtype = self._helper.get_default_dtype()
        self._d_model = d_model
        self._dim_feedforward = dim_feedforward
        self._dropout_rate = dropout_rate
        self._act_dropout_rate = dropout_rate if act_dropout_rate is None else act_dropout_rate
        self._act_method = activation
        self._normalize_before = normalize_before
280
        self._epsilon = epsilon
281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316

        self._linear1_weight = self.create_parameter(
            shape=[d_model, dim_feedforward],
            attr=weight_attr,
            dtype=self._dtype,
            is_bias=False)
        self._linear1_bias = self.create_parameter(
            shape=[dim_feedforward],
            attr=bias_attr,
            dtype=self._dtype,
            is_bias=True)

        self._linear2_weight = self.create_parameter(
            shape=[dim_feedforward, d_model],
            attr=weight_attr,
            dtype=self._dtype,
            is_bias=False)

        self._linear2_bias = self.create_parameter(
            shape=[d_model], attr=bias_attr, dtype=self._dtype, is_bias=True)

        self._ln1_scale = self.create_parameter(
            shape=[d_model],
            attr=None,
            is_bias=False,
            default_initializer=Constant(1.0))
        self._ln1_bias = self.create_parameter(
            shape=[d_model], attr=None, is_bias=True)

        self._ln2_scale = self.create_parameter(
            shape=[d_model],
            attr=None,
            is_bias=False,
            default_initializer=Constant(1.0))
        self._ln2_bias = self.create_parameter(
            shape=[d_model], attr=None, is_bias=True)
317
        self.name = name
318 319

    def forward(self, src, cache=None):
320
        out = incubate_f.fused_feedforward(
321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
            src,
            self._linear1_weight,
            self._linear2_weight,
            self._linear1_bias,
            self._linear2_bias,
            self._ln1_scale,
            self._ln1_bias,
            self._ln2_scale,
            self._ln2_bias,
            dropout1_rate=self._act_dropout_rate,
            dropout2_rate=self._dropout_rate,
            activation=self._act_method,
            ln1_epsilon=self._epsilon,
            ln2_epsilon=self._epsilon,
            pre_layer_norm=self._normalize_before,
            training=self.training,
            name=self.name)
338
        return out
339

340 341 342 343 344 345 346
    def extra_repr(self):
        name_str = ', name={}'.format(self.name) if self.name else ''
        return 'd_model={}, dim_feedforward={}, dropout_rate={}, epsilon={}, activation={}, act_dropout_rate={}, normalize_before={}, dtype={}{}'.format(
            self._d_model, self._dim_feedforward, self._dropout_rate,
            self._epsilon, self._act_method, self._act_dropout_rate,
            self._normalize_before, self._dtype, name_str)

347 348 349

class FusedTransformerEncoderLayer(Layer):
    """
350
    FusedTransformerEncoderLayer is composed of two sub-layers which are self (multi-head)
351 352 353 354 355 356 357 358 359 360
    attention and feedforward network. Before and after each sub-layer, pre-process
    and post-precess would be applied on the input and output accordingly. If
    `normalize_before` is True, pre-process is layer normalization and post-precess
    includes dropout, residual connection. Otherwise, no pre-process and post-precess
    includes dropout, residual connection, layer normalization.

    Parameters:
        d_model (int): The expected feature size in the input and output.
        nhead (int): The number of heads in multi-head attention(MHA).
        dim_feedforward (int): The hidden layer size in the feedforward network(FFN).
361
        dropout_rate (float, optional): The dropout probability used in pre-process
362 363 364
            and post-precess of MHA and FFN sub-layer. Default 0.1
        activation (str, optional): The activation function in the feedforward
            network. Default relu.
365
        attn_dropout_rate (float, optional): The dropout probability used
366 367
            in MHA to drop some attention target. If None, use the value of
            `dropout`. Default None
368
        act_dropout_rate (float, optional): The dropout probability used after FFN
369 370 371 372 373 374 375 376 377 378 379
            activition.  If None, use the value of `dropout`. Default None
        normalize_before (bool, optional): Indicate whether to put layer normalization
            into preprocessing of MHA and FFN sub-layers. If True, pre-process is layer
            normalization and post-precess includes dropout, residual connection.
            Otherwise, no pre-process and post-precess includes dropout, residual
            connection, layer normalization. Default False
        weight_attr(ParamAttr|list|tuple, optional): To specify the weight parameter property.
            If it is a list/tuple, `weight_attr[0]` would be used as `weight_attr` for
            MHA, and `weight_attr[1]` would be used as `weight_attr` for linear in FFN.
            Otherwise, MHA and FFN both use it as `weight_attr` to create parameters.
            Default: None, which means the default weight parameter property is used.
380
            See usage for details in :code:`ParamAttr` .
381 382 383 384 385 386 387
        bias_attr (ParamAttr|list|tuple|bool, optional): To specify the bias parameter property.
            If it is a list/tuple, `bias_attr[0]` would be used as `bias_attr` for
            MHA, and `bias_attr[1]` would be used as `bias_attr` for linear in FFN.
            Otherwise, MHA and FFN both use it as `bias_attr` to create parameters.
            The `False` value means the corresponding layer would not have trainable
            bias parameter. See usage for details in :code:`ParamAttr` . Default: None,
            which means the default bias parameter property is used.
388

389 390 391 392

    Examples:

        .. code-block:: python
393

394
	    # required: gpu
395
            import paddle
396
            from paddle.incubate.nn import FusedTransformerEncoderLayer
397 398 399 400 401

            # encoder input: [batch_size, src_len, d_model]
            enc_input = paddle.rand((2, 4, 128))
            # self attention mask: [batch_size, n_head, src_len, src_len]
            attn_mask = paddle.rand((2, 2, 4, 4))
402
            encoder_layer = FusedTransformerEncoderLayer(128, 2, 512)
403 404 405 406 407 408 409
            enc_output = encoder_layer(enc_input, attn_mask)  # [2, 4, 128]
    """

    def __init__(self,
                 d_model,
                 nhead,
                 dim_feedforward,
410
                 dropout_rate=0.1,
411
                 activation="relu",
412 413
                 attn_dropout_rate=None,
                 act_dropout_rate=None,
414 415 416 417 418 419 420 421
                 normalize_before=False,
                 weight_attr=None,
                 bias_attr=None):
        self._config = locals()
        self._config.pop("self")
        self._config.pop("__class__", None)  # py3

        super(FusedTransformerEncoderLayer, self).__init__()
422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
        assert d_model > 0, ("Expected d_model to be greater than 0, "
                             "but recieved {}".format(d_model))
        assert nhead > 0, ("Expected nhead to be greater than 0, "
                           "but recieved {}".format(nhead))
        assert dim_feedforward > 0, (
            "Expected dim_feedforward to be greater than 0, "
            "but recieved {}".format(dim_feedforward))
        attn_dropout_rate = dropout_rate if attn_dropout_rate is None else attn_dropout_rate
        act_dropout_rate = dropout_rate if act_dropout_rate is None else act_dropout_rate
        self.normalize_before = normalize_before

        weight_attrs = _convert_param_attr_to_list(weight_attr, 2)
        bias_attrs = _convert_param_attr_to_list(bias_attr, 2)

        self.fused_attn = FusedMultiHeadAttention(
            d_model,
            nhead,
439 440 441
            dropout_rate=dropout_rate,
            attn_dropout_rate=attn_dropout_rate,
            normalize_before=self.normalize_before,
442 443 444 445 446 447 448
            weight_attr=weight_attrs[0],
            bias_attr=bias_attrs[0])

        self.ffn = FusedFeedForward(
            d_model,
            dim_feedforward,
            dropout_rate=dropout_rate,
449
            activation=activation,
450 451 452 453
            act_dropout_rate=act_dropout_rate,
            normalize_before=self.normalize_before,
            weight_attr=weight_attrs[1],
            bias_attr=bias_attrs[1])
454 455 456 457 458 459 460 461 462 463 464 465

    def forward(self, src, src_mask=None, cache=None):
        """
        Applies a Transformer encoder layer on the input.
        Parameters:
            src (Tensor): The input of Transformer encoder layer. It is
                a tensor with shape `[batch_size, sequence_length, d_model]`.
                The data type should be float32 or float64.
            src_mask (Tensor, optional): A tensor used in multi-head attention
                to prevents attention to some unwanted positions, usually the
                paddings or the subsequent positions. It is a tensor with shape
                broadcasted to `[batch_size, n_head, sequence_length, sequence_length]`.
466 467 468 469 470
                When the data type is bool, the unwanted positions have `False`
                values and the others have `True` values. When the data type is
                int, the unwanted positions have 0 values and the others have 1
                values. When the data type is float, the unwanted positions have
                `-INF` values and the others have 0 values. It can be None when
471 472 473 474 475 476 477 478 479 480 481 482 483 484
                nothing wanted or needed to be prevented attention to. Default None.
            cache (Tensor, optional): It is an instance of `MultiHeadAttention.Cache`.
                See `TransformerEncoderLayer.gen_cache` for more details. It is
                only used for inference and should be None for training. Default
                None.
        Returns:
            Tensor|tuple: It is a tensor that has the same shape and data type \
                as `enc_input`, representing the output of Transformer encoder \
                layer. Or a tuple if `cache` is not None, except for encoder \
                layer output, the tuple includes the new cache which is same \
                as input `cache` argument but `incremental_cache` has an \
                incremental length. See `MultiHeadAttention.gen_cache` and \
                `MultiHeadAttention.forward` for more details.
        """
485 486 487 488 489 490 491 492 493 494
        src_mask = _convert_attention_mask(src_mask, src.dtype)
        if cache is None:
            attn_out = self.fused_attn(src, attn_mask=src_mask)
        else:
            attn_out, incremental_cache = self.fused_attn(
                src, attn_mask=src_mask, cache=cache)

        ffn_out = self.ffn(attn_out)

        return ffn_out if cache is None else (ffn_out, incremental_cache)
495 496 497 498 499 500 501 502 503 504


class FusedTransformer(Layer):
    """
    A Transformer model composed of an instance of `TransformerEncoder` and an
    instance of `TransformerDecoder`. While the embedding layer and output layer
    are not included.

    Please refer to `Attention is all you need <http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf>`_ ,
    and see `TransformerEncoder` and `TransformerDecoder` for more details.
505

506 507 508 509
    Users can configurate the model architecture with corresponding parameters.
    Note the usage of `normalize_before` representing where to apply layer
    normalization (in pre-process or post-precess of multi-head attention or FFN),
    and some transformer like models are different on this, such as
510
    `BERT <https://arxiv.org/abs/1810.04805>`_ and `GPT2 <https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf>`_ .
511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535
    The default architecture here places layer normalization in post-process and
    applies another layer normalization on the output of last encoder/decoder layer.

    Parameters:
        d_model (int, optional): The expected feature size in the encoder/decoder input
            and output. Default 512
        nhead (int, optional): The number of heads in multi-head attention(MHA). Default 8
        num_encoder_layers (int, optional): The number of layers in encoder. Default 6
        num_decoder_layers (int, optional): The number of layers in decoder. Default 6
        dim_feedforward (int, optional): The hidden layer size in the feedforward network(FFN). Default 2048
        dropout (float, optional): The dropout probability used in pre-process
            and post-precess of MHA and FFN sub-layer. Default 0.1
        activation (str, optional): The activation function in the feedforward
            network. Default relu.
        attn_dropout (float, optional): The dropout probability used
            in MHA to drop some attention target. If None, use the value of
            `dropout`. Default None
        act_dropout (float, optional): The dropout probability used after FFN
            activition.  If None, use the value of `dropout`. Default None
        normalize_before (bool, optional): Indicate whether to put layer normalization
            into preprocessing of MHA and FFN sub-layers. If True, pre-process is layer
            normalization and post-precess includes dropout, residual connection.
            Otherwise, no pre-process and post-precess includes dropout, residual
            connection, layer normalization. Default False
        weight_attr(ParamAttr|list|tuple, optional): To specify the weight parameter property.
536 537 538 539 540 541 542 543 544 545
            If it is a list/tuple, the length of `weight_attr` could be 1, 2 or 3. If it is 3,
            `weight_attr[0]` would be used as `weight_attr` for self attention, `weight_attr[1]`
            would be used as `weight_attr` for cross attention of `TransformerDecoder`,
            and `weight_attr[2]` would be used as `weight_attr` for linear in FFN.
            If it is 2, `weight_attr[0]` would be used as `weight_attr` both for self attention
            and cross attntion and `weight_attr[1]` would be used as `weight_attr` for
            linear in FFN. If it is 1, `weight_attr[0]` would be used as `weight_attr`
            for self attention, cross attention and linear in FFN. Otherwise,
            the three sub-layers all uses it as `weight_attr` to create parameters.
            Default: None, which means the default weight parameter property is used.
546
            See usage for details
547
            in :code:`ParamAttr` .
548
        bias_attr (ParamAttr|list|tuple|bool, optional): To specify the bias parameter property.
549 550 551 552 553 554 555 556 557 558 559
            If it is a list/tuple, the length of `bias_attr` could be 1, 2 or 3. If it is 3,
            `bias_attr[0]` would be used as `bias_attr` for self attention, `bias_attr[1]`
            would be used as `bias_attr` for cross attention of `TransformerDecoder`,
            and `bias_attr[2]` would be used as `bias_attr` for linear in FFN.
            If it is 2, `bias_attr[0]` would be used as `bias_attr` both for self attention
            and cross attntion and `bias_attr[1]` would be used as `bias_attr` for
            linear in FFN. If it is 1, `bias_attr[0]` would be used as `bias_attr`
            for self attention, cross attention and linear in FFN. Otherwise,
            the three sub-layers all uses it as `bias_attr` to create parameters.
            The `False` value means the corresponding layer would not have trainable
            bias parameter. See usage for details in :code:`ParamAttr` .
560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606
            Default: None,which means the default bias parameter property is used.
        custom_encoder (Layer, optional): If custom encoder is provided, use it as the encoder.
            Default None
        custom_decoder (Layer, optional): If custom decoder is provided, use it as the decoder.
            Default None

    Examples:

        .. code-block:: python

            import paddle
            from paddle.nn import Transformer

            # src: [batch_size, tgt_len, d_model]
            enc_input = paddle.rand((2, 4, 128))
            # tgt: [batch_size, src_len, d_model]
            dec_input = paddle.rand((2, 6, 128))
            # src_mask: [batch_size, n_head, src_len, src_len]
            enc_self_attn_mask = paddle.rand((2, 2, 4, 4))
            # tgt_mask: [batch_size, n_head, tgt_len, tgt_len]
            dec_self_attn_mask = paddle.rand((2, 2, 6, 6))
            # memory_mask: [batch_size, n_head, tgt_len, src_len]
            cross_attn_mask = paddle.rand((2, 2, 6, 4))
            transformer = Transformer(128, 2, 4, 4, 512)
            output = transformer(enc_input,
                                 dec_input,
                                 enc_self_attn_mask,
                                 dec_self_attn_mask,
                                 cross_attn_mask)  # [2, 6, 128]
    """

    def __init__(self,
                 d_model=512,
                 nhead=8,
                 num_encoder_layers=6,
                 num_decoder_layers=6,
                 dim_feedforward=2048,
                 dropout=0.1,
                 activation="relu",
                 attn_dropout=None,
                 act_dropout=None,
                 normalize_before=False,
                 weight_attr=None,
                 bias_attr=None,
                 custom_encoder=None,
                 custom_decoder=None):
        super(fusedTransformer, self).__init__()
607
        raise NotImplementedError()
608 609

    def forward(self, src, tgt, src_mask=None, tgt_mask=None, memory_mask=None):
610
        raise NotImplementedError()