dataprovider_bow.py 3.6 KB
Newer Older
1
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
Z
zhangjinchao01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from paddle.trainer.PyDataProvider2 import *

# id of the word not in dictionary
UNK_IDX = 0

20

Z
zhangjinchao01 已提交
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
# initializer is called by the framework during initialization.
# It allows the user to describe the data types and setup the
# necessary data structure for later use.
# `settings` is an object. initializer need to properly fill settings.input_types.
# initializer can also store other data structures needed to be used at process().
# In this example, dictionary is stored in settings.
# `dictionay` and `kwargs` are arguments passed from trainer_config.lr.py
def initializer(settings, dictionary, **kwargs):
    # Put the word dictionary into settings
    settings.word_dict = dictionary

    # setting.input_types specifies what the data types the data provider
    # generates.
    settings.input_types = [
        # The first input is a sparse_binary_vector,
        # which means each dimension of the vector is either 0 or 1. It is the
        # bag-of-words (BOW) representation of the texts.
        sparse_binary_vector(len(dictionary)),
        # The second input is an integer. It represents the category id of the
        # sample. 2 means there are two labels in the dataset.
        # (1 for positive and 0 for negative)
42 43 44
        integer_value(2)
    ]

Z
zhangjinchao01 已提交
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74

# Delaring a data provider. It has an initializer 'data_initialzer'.
# It will cache the generated data of the first pass in memory, so that
# during later pass, no on-the-fly data generation will be needed.
# `setting` is the same object used by initializer()
# `file_name` is the name of a file listed train_list or test_list file given
# to define_py_data_sources2(). See trainer_config.lr.py.
@provider(init_hook=initializer, cache=CacheType.CACHE_PASS_IN_MEM)
def process(settings, file_name):
    # Open the input data file.
    with open(file_name, 'r') as f:
        # Read each line.
        for line in f:
            # Each line contains the label and text of the comment, separated by \t.
            label, comment = line.strip().split('\t')

            # Split the words into a list.
            words = comment.split()

            # convert the words into a list of ids by looking them up in word_dict.
            word_vector = [settings.word_dict.get(w, UNK_IDX) for w in words]

            # Return the features for the current comment. The first is a list
            # of ids representing a 0-1 binary sparse vector of the text,
            # the second is the integer id of the label.
            yield word_vector, int(label)


def predict_initializer(settings, dictionary, **kwargs):
    settings.word_dict = dictionary
75 76
    settings.input_types = [sparse_binary_vector(len(dictionary))]

Z
zhangjinchao01 已提交
77 78 79

# Declaring a data provider for prediction. The difference with process
# is that label is not generated.
D
dangqingqing 已提交
80
@provider(init_hook=predict_initializer, should_shuffle=False)
Z
zhangjinchao01 已提交
81 82 83
def process_predict(settings, file_name):
    with open(file_name, 'r') as f:
        for line in f:
84
            comment = line.strip().split()
Z
zhangjinchao01 已提交
85 86
            word_vector = [settings.word_dict.get(w, UNK_IDX) for w in comment]
            yield word_vector