concat_op.h 3.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

17
#include <utility>
18
#include <vector>
Y
Yi Wang 已提交
19
#include "paddle/fluid/framework/op_registry.h"
C
chengduoZH 已提交
20
#include "paddle/fluid/operators/math/concat.h"
Y
Yi Wang 已提交
21
#include "paddle/fluid/operators/strided_memcpy.h"
22 23 24 25

namespace paddle {
namespace operators {

Q
QI JUN 已提交
26
template <typename DeviceContext, typename T>
Y
Yu Yang 已提交
27
class ConcatKernel : public framework::OpKernel<T> {
28 29 30
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto ins = ctx.MultiInput<framework::Tensor>("X");
C
chengduoZH 已提交
31
    framework::Tensor* out = ctx.Output<framework::Tensor>("Out");
32
    int64_t axis = static_cast<int64_t>(ctx.Attr<int>("axis"));
Y
Yancey1989 已提交
33 34
    auto place = ctx.GetPlace();
    out->mutable_data<T>(place);
C
chengduoZH 已提交
35

C
chengduoZH 已提交
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
    // Sometimes direct copies will be faster, this maybe need deeply analysis.
    if (axis == 0 && ins.size() < 10) {
      size_t output_offset = 0;
      for (auto* in : ins) {
        auto in_stride = framework::stride_numel(in->dims());
        auto out_stride = framework::stride_numel(out->dims());
        StridedNumelCopyWithAxis<T>(ctx.device_context(), axis,
                                    out->data<T>() + output_offset, out_stride,
                                    in->data<T>(), in_stride, in_stride[axis]);
        output_offset += in_stride[axis];
      }
    } else {
      std::vector<framework::Tensor> inputs(ins.size());
      for (size_t j = 0; j < ins.size(); ++j) {
        inputs[j] = *ins[j];
      }
      auto& dev_ctx = ctx.template device_context<DeviceContext>();
      paddle::operators::math::ConcatFunctor<DeviceContext, T> concat_functor;
      concat_functor(dev_ctx, inputs, static_cast<int>(axis), out);
55 56 57 58
    }
  }
};

Q
QI JUN 已提交
59
template <typename DeviceContext, typename T>
Y
Yu Yang 已提交
60
class ConcatGradKernel : public framework::OpKernel<T> {
61 62 63 64 65
 public:
  void Compute(const framework::ExecutionContext& ctx) const {
    auto* in = ctx.Input<framework::Tensor>(framework::GradVarName("Out"));
    auto outs = ctx.MultiOutput<framework::Tensor>(framework::GradVarName("X"));
    int64_t axis = static_cast<int64_t>(ctx.Attr<int>("axis"));
Y
Yancey1989 已提交
66

C
chengduoZH 已提交
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
    // Sometimes direct copies will be faster, this maybe need deeply analysis.
    if (axis == 0 && outs.size() < 10) {
      size_t input_offset = 0;
      auto in_stride = framework::stride_numel(in->dims());

      for (auto& out : outs) {
        out->mutable_data<T>(ctx.GetPlace());
        auto out_stride = framework::stride_numel(out->dims());
        StridedNumelCopyWithAxis<T>(ctx.device_context(), axis, out->data<T>(),
                                    out_stride, in->data<T>() + input_offset,
                                    in_stride, out_stride[axis]);
        input_offset += out_stride[axis];
      }
    } else {
      std::vector<framework::Tensor> outputs(outs.size());
      for (size_t j = 0; j < outs.size(); ++j) {
        outs[j]->mutable_data<T>(ctx.GetPlace());
        outputs[j] = *outs[j];
      }
C
chengduoZH 已提交
86

C
chengduoZH 已提交
87 88 89 90 91
      auto& dev_ctx = ctx.template device_context<DeviceContext>();
      paddle::operators::math::ConcatGradFunctor<DeviceContext, T>
          concat_grad_functor;
      concat_grad_functor(dev_ctx, *in, static_cast<int>(axis), outputs);
    }
92 93 94 95 96
  }
};

}  // namespace operators
}  // namespace paddle