test_mul_nn_grad.py 4.4 KB
Newer Older
C
ceci3 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest
import numpy as np

import paddle
import paddle.fluid as fluid
import paddle.fluid.layers as layers
import paddle.fluid.core as core
import gradient_checker
from decorator_helper import prog_scope
paddle.enable_static()


class TestMulGradCheck(unittest.TestCase):
    @prog_scope()
    def func(self, place):
        prog = fluid.Program()
        with fluid.program_guard(prog):
            x = layers.create_parameter(dtype="float64", shape=[2, 8], name='x')
            y = layers.create_parameter(dtype="float64", shape=[8, 4], name='y')
            z = layers.mul(x=x, y=y)
            gradient_checker.grad_check([x, y], z, place=place)

    def test_grad(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestMulDoubleGradCheck(unittest.TestCase):
    @prog_scope()
    def func(self, place):
        # the shape of input variable should be clearly specified, not inlcude -1.
        x_shape = [7, 11]
        y_shape = [11, 9]
        eps = 0.005
        dtype = np.float64

        x = layers.data('x', x_shape, False, dtype)
        x.persistable = True
        y = layers.data('y', y_shape, False, dtype)
        y.persistable = True
        out = layers.mul(x, y)
        x_arr = np.random.uniform(-1, 1, x_shape).astype(dtype)
        y_arr = np.random.uniform(-1, 1, y_shape).astype(dtype)

        gradient_checker.double_grad_check(
            [x, y], out, x_init=[x_arr, y_arr], place=place, eps=eps)

    def test_grad(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestMatmulDoubleGradCheck(unittest.TestCase):
    def setUp(self):
        self.init_test()

    def init_test(self):
        self.x_shape = [2]
        self.y_shape = [2]
        self.transpose_x = False
        self.transpose_y = False

    @prog_scope()
    def func(self, place):
        eps = 0.005
        dtype = np.float64
        typename = "float64"
        x = layers.create_parameter(
            dtype=typename, shape=self.x_shape, name='x')
        y = layers.create_parameter(
            dtype=typename, shape=self.y_shape, name='y')
        out = layers.matmul(
            x, y, self.transpose_x, self.transpose_y, name='out')

        x_arr = np.random.uniform(-1, 1, self.x_shape).astype(dtype)
        y_arr = np.random.uniform(-1, 1, self.y_shape).astype(dtype)
        gradient_checker.double_grad_check(
            [x, y], out, x_init=[x_arr, y_arr], place=place, eps=eps)

    def test_grad(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


def TestMatmulDoubleGradCheckCase1(TestMatmulDoubleGradCheck):
    def init_test(self):
        self.x_shape = [2, 3]
        self.y_shape = [3, 2]
        self.transpose_x = True
        self.transpose_y = True


def TestMatmulDoubleGradCheckCase2(TestMatmulDoubleGradCheck):
    def init_test(self):
        self.x_shape = [2, 4, 3]
        self.y_shape = [2, 4, 5]
        self.transpose_x = True
        self.transpose_y = False


def TestMatmulDoubleGradCheckCase3(TestMatmulDoubleGradCheck):
    def init_test(self):
        self.x_shape = [2, 3, 4, 5]
        self.y_shape = [2, 3, 3, 5]
        self.transpose_x = False
        self.transpose_y = True


def TestMatmulDoubleGradCheckCase4(TestMatmulDoubleGradCheck):
    def init_test(self):
        self.x_shape = [2, 3, 4]
        self.y_shape = [4, 3]
        self.transpose_x = False
        self.transpose_y = False


if __name__ == "__main__":
    unittest.main()