conv.py 65.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
from __future__ import print_function
15

16
import numpy as np
L
LielinJiang 已提交
17
from ...device import get_cudnn_version
18
from ...fluid.framework import Variable, in_dygraph_mode
19
from ...fluid import core, dygraph_utils, get_flags
20 21 22 23 24
from ...fluid.layers import nn, utils
from ...fluid.data_feeder import check_variable_and_dtype
from ...fluid.param_attr import ParamAttr
from ...fluid.layer_helper import LayerHelper

25 26
__all__ = []

27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87

def _is_list_or_tuple(input):
    return isinstance(input, (list, tuple))


def _zero_padding_in_batch_and_channel(padding, channel_last):
    if channel_last:
        return list(padding[0]) == [0, 0] and list(padding[-1]) == [0, 0]
    else:
        return list(padding[0]) == [0, 0] and list(padding[1]) == [0, 0]


def _exclude_padding_in_batch_and_channel(padding, channel_last):
    padding_ = padding[1:-1] if channel_last else padding[2:]
    padding_ = [elem for pad_a_dim in padding_ for elem in pad_a_dim]
    return padding_


def _update_padding_nd(padding, channel_last, num_dims):
    if isinstance(padding, str):
        padding = padding.upper()
        if padding not in ["SAME", "VALID"]:
            raise ValueError(
                "Unknown padding: '{}'. It can only be 'SAME' or 'VALID'.".
                format(padding))
        if padding == "VALID":
            padding_algorithm = "VALID"
            padding = [0] * num_dims
        else:
            padding_algorithm = "SAME"
            padding = [0] * num_dims
    elif _is_list_or_tuple(padding):
        # for padding like
        # [(pad_before, pad_after), (pad_before, pad_after), ...]
        # padding for batch_dim and channel_dim included
        if len(padding) == 2 + num_dims and _is_list_or_tuple(padding[0]):
            if not _zero_padding_in_batch_and_channel(padding, channel_last):
                raise ValueError(
                    "Non-zero padding({}) in the batch or channel dimensions "
                    "is not supported.".format(padding))
            padding_algorithm = "EXPLICIT"
            padding = _exclude_padding_in_batch_and_channel(padding,
                                                            channel_last)
            if utils._is_symmetric_padding(padding, num_dims):
                padding = padding[0::2]
        # for padding like [pad_before, pad_after, pad_before, pad_after, ...]
        elif len(padding) == 2 * num_dims and isinstance(padding[0], int):
            padding_algorithm = "EXPLICIT"
            padding = utils.convert_to_list(padding, 2 * num_dims, 'padding')
            if utils._is_symmetric_padding(padding, num_dims):
                padding = padding[0::2]
        # for padding like [pad_d1, pad_d2, ...]
        elif len(padding) == num_dims and isinstance(padding[0], int):
            padding_algorithm = "EXPLICIT"
            padding = utils.convert_to_list(padding, num_dims, 'padding')
        else:
            raise ValueError("In valid padding: {}".format(padding))
    # for integer padding
    else:
        padding_algorithm = "EXPLICIT"
        padding = utils.convert_to_list(padding, num_dims, 'padding')
88 89 90 91
    if not all([p >= 0 for p in padding]):
        raise ValueError(
            "Invalid padding, all value should be larger than or equal to 0, but received: {}".
            format(padding))
92 93 94
    return padding, padding_algorithm


L
LielinJiang 已提交
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
def _conv_nd(x,
             weight,
             bias=None,
             stride=1,
             padding=0,
             padding_algorithm=None,
             dilation=1,
             groups=1,
             data_format="NCHW",
             channel_dim=1,
             op_type="conv2d",
             use_cudnn=True,
             use_mkldnn=False,
             name=None):

110 111
    # Due to the poor performance of NHWC, we transpose the input to NCHW.
    origin_format = data_format
L
LielinJiang 已提交
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
    if in_dygraph_mode():
        attrs = ('strides', stride, 'paddings', padding, 'dilations', dilation,
                 'groups', groups, 'use_cudnn', use_cudnn, 'use_mkldnn',
                 use_mkldnn, 'fuse_relu_before_depthwise_conv', False,
                 "padding_algorithm", padding_algorithm, "data_format",
                 data_format)
        pre_bias = getattr(core.ops, op_type)(x, weight, *attrs)
        if bias is not None:
            out = nn.elementwise_add(pre_bias, bias, axis=channel_dim)
        else:
            out = pre_bias
    else:
        inputs = {'Input': [x], 'Filter': [weight]}
        attrs = {
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
            'use_mkldnn': use_mkldnn,
            'fuse_relu_before_depthwise_conv': False,
            "padding_algorithm": padding_algorithm,
            "data_format": data_format
        }
        check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                                 op_type)
        helper = LayerHelper(op_type, **locals())
        dtype = helper.input_dtype(input_param_name='x')
        pre_bias = helper.create_variable_for_type_inference(dtype)
        outputs = {"Output": [pre_bias]}
        helper.append_op(
            type=op_type, inputs=inputs, outputs=outputs, attrs=attrs)
        if bias is not None:
            out = helper.create_variable_for_type_inference(dtype)
            helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias],
                        'Y': [bias]},
                outputs={'Out': [out]},
                attrs={'axis': channel_dim,
                       'use_mkldnn': use_mkldnn})
        else:
            out = pre_bias
    return out


W
whs 已提交
158 159 160 161 162 163 164 165 166
def conv1d(x,
           weight,
           bias=None,
           stride=1,
           padding=0,
           dilation=1,
           groups=1,
           data_format='NCL',
           name=None):
167
    r"""
W
whs 已提交
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
    The convolution1D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCL format, where N is batch size, C is the number of
    channels, L is the length of the feature.
    Filter is in MCK format, where M is the number of output image channels,
    C is the number of input image channels, K is the size of the kernel.
    If the groups is greater than 1, C will equal the number of input image
    channels divided by the groups. If bias attribution and activation type
    are provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

W
whs 已提交
183
        Out = \sigma (W \ast X + b)
W
whs 已提交
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209

    Where:

    * :math:`X`: Input value, a tensor with NCL format.
    * :math:`W`: Kernel value, a tensor with MCK format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, L_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, L_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, L_{out})`

        Where

        .. math::

W
whs 已提交
210
            L_{out} = \frac{(L_{in} + 2 * padding - (dilation * (L_f - 1) + 1))}{stride} + 1
W
whs 已提交
211 212 213 214 215 216 217

    Args:
        x (Tensor): The input is 3-D Tensor with shape [N, C, L], the data type 
            of input is float16 or float32 or float64.
        weight (Tensor): The convolution kernel with shape [M, C/g, K], where M is
            the number of output channels, g is the number of groups, K is the kernel's size. 
        bias (Tensor, optional): The bias with shape [M,]. Default: None.
218
        stride (int|list|tuple, optional): The stride size. If stride is a list/tuple, it must
W
whs 已提交
219
            contain one integers, (stride_size). Default: 1.
220
        padding(int|str|tuple|list, optional): The padding size. Padding could be in one of the following forms.
W
whs 已提交
221 222 223 224 225 226
            1. a string in ['valid', 'same'].
            2. an int, which means the feature map is zero paded by size of `padding` on both sides.
            3. a list[int] or tuple[int] whose length is 1, which means the feature map is zero paded by size of `padding[0]` on both sides.
            4. a list[int] or tuple[int] whose length is 2. It has the form  [pad_before, pad_after].
            5. a list or tuple of pairs of ints. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension are also included. Each pair of integers correspond to the amount of padding for a dimension of the input. Padding in batch dimension and channel dimension should be [0, 0] or (0, 0).
            The default value is 0.
227
        dilation (int|list|tuple, optional): The dilation size. If dilation is a list/tuple, it must
W
whs 已提交
228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
            contain one integer, (dilation_size). Default: 1.
        groups (int, optional): The groups number of the conv1d function. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: 1.
        data_format (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCL"`, `"NLC"`.
            The default is `"NCL"`. When it is `"NCL"`, the data is stored in the order of:
            `[batch_size, input_channels, feature_length]`.
        name(str, optional): For detailed information, please refer 
           to :ref:`api_guide_Name`. Usually name is no need to set and 
           None by default.

    Returns:
        A tensor representing the conv1d, whose data type is the 
        same with input.

    Raises:
247
        ValueError: If the channel dimension of the input is less than or equal to zero.
W
whs 已提交
248 249
        ValueError: If `data_format` is not "NCL" or "NLC".
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
250
        ValueError: If `padding` is a list/tuple, but the element corresponding to the input's batch size is not 0 
W
whs 已提交
251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
            or the element corresponding to the input's channel is not 0.
        ShapeError: If the input is not 3-D Tensor.
        ShapeError: If the input's dimension size and filter's dimension size not equal.
        ShapeError: If the dimension size of input minus the size of `stride` is not 1.
        ShapeError: If the number of input channels is not equal to filter's channels * groups.
        ShapeError: If the number of output channels is not be divided by groups.

    Examples:
        .. code-block:: python

          import paddle
          import paddle.nn.functional as F
          import numpy as np
          x = np.array([[[4, 8, 1, 9],
            [7, 2, 0, 9],
            [6, 9, 2, 6]]]).astype(np.float32)
          w=np.array(
          [[[9, 3, 4],
            [0, 0, 7],
            [2, 5, 6]],
           [[0, 3, 4],
            [2, 9, 7],
            [5, 6, 8]]]).astype(np.float32)
L
LielinJiang 已提交
274
          
W
whs 已提交
275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
          x_var = paddle.to_tensor(x)
          w_var = paddle.to_tensor(w)
          y_var = F.conv1d(x_var, w_var)
          y_np = y_var.numpy()
          print(y_np)
          
          # [[[133. 238.]
          #   [160. 211.]]]
    """
    cudnn_version = get_cudnn_version()
    if cudnn_version is not None:
        use_cudnn = True
    else:
        use_cudnn = False

    if data_format not in ["NCL", "NLC"]:
        raise ValueError("Attr(data_format) should be 'NCL' or 'NLC'. "
                         "Received Attr(data_format): {}.".format(data_format))

L
LielinJiang 已提交
294
    channel_last = (data_format == "NLC")
W
whs 已提交
295 296 297 298 299
    channel_dim = -1 if channel_last else 1
    conv2d_data_format = "NHWC" if channel_last else "NCHW"
    num_channels = x.shape[channel_dim]
    num_filters = weight.shape[0]
    if num_channels < 0:
300
        raise ValueError("The channel dimension of the input({}) "
W
whs 已提交
301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
                         "should be defined. Received: {}.".format(
                             x.shape, num_channels))
    if num_channels % groups != 0:
        raise ValueError(
            "the channel of input must be divisible by groups,"
            "received: the channel of input is {}, the shape of input is {}"
            ", the groups is {}".format(num_channels, x.shape, groups))
    if num_filters % groups != 0:
        raise ValueError(
            "the number of filters must be divisible by groups,"
            "received: the number of filters is {}, the shape of weight is {}"
            ", the groups is {}".format(num_filters, weight.shape, groups))

    # update attrs
    padding, padding_algorithm = _update_padding_nd(padding, channel_last, 1)
    if len(padding) == 2:
        padding = padding + [0] * 2
    elif len(padding) == 1:
        padding = padding + [0]
    else:
        raise ValueError(
322
            "The size of padding's dimension should be 1 or 2. But got padding={}".
W
whs 已提交
323 324 325 326 327 328
            format(padding))

    stride = utils.convert_to_list(stride, 1, 'stride') + [1]
    dilation = utils.convert_to_list(dilation, 1, 'dilation') + [1]

    l_type = "conv2d"
L
LielinJiang 已提交
329 330
    if (num_channels == groups and num_channels != 1 and
            num_filters % num_channels == 0 and not use_cudnn):
W
whs 已提交
331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
        l_type = 'depthwise_conv2d'
        use_cudnn = False

    inputs = {'Input': [x], 'Filter': [weight]}
    attrs = {
        'strides': stride,
        'paddings': padding,
        'dilations': dilation,
        'groups': groups,
        'use_cudnn': use_cudnn,
        'use_mkldnn': False,
        'fuse_relu_before_depthwise_conv': False,
        "padding_algorithm": padding_algorithm,
        "data_format": conv2d_data_format
    }
    squeeze_aixs = -2 if channel_last else -1
    x = nn.unsqueeze(input=x, axes=[squeeze_aixs])
    weight = nn.unsqueeze(input=weight, axes=[-1])
    if in_dygraph_mode():
        attrs = ('strides', stride, 'paddings', padding, 'dilations', dilation,
                 'groups', groups, 'use_cudnn', use_cudnn, 'use_mkldnn', False,
                 'fuse_relu_before_depthwise_conv', False, "padding_algorithm",
                 padding_algorithm, "data_format", conv2d_data_format)
        out = getattr(core.ops, l_type)(x, weight, *attrs)
        if bias is not None:
            out = nn.elementwise_add(out, bias, axis=channel_dim)
    else:
        inputs = {'Input': [x], 'Filter': [weight]}
        attrs = {
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
            'use_mkldnn': False,
            'fuse_relu_before_depthwise_conv': False,
            "padding_algorithm": padding_algorithm,
            "data_format": conv2d_data_format
        }
        check_variable_and_dtype(x, 'input', ['float16', 'float32', 'float64'],
                                 'conv2d')
        helper = LayerHelper(l_type, **locals())
373
        dtype = helper.input_dtype(input_param_name='x')
W
whs 已提交
374 375 376 377 378 379 380 381 382 383
        out = helper.create_variable_for_type_inference(dtype)
        outputs = {"Output": [out]}
        helper.append_op(
            type=l_type, inputs=inputs, outputs=outputs, attrs=attrs)
        if bias is not None:
            out = nn.elementwise_add(out, bias, axis=channel_dim)
    out = nn.squeeze(input=out, axes=[squeeze_aixs])
    return out


384
def conv2d(x,
385 386 387
           weight,
           bias=None,
           stride=1,
388
           padding=0,
389 390 391 392
           dilation=1,
           groups=1,
           data_format="NCHW",
           name=None):
393
    r"""
S
swtkiwi 已提交
394

395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411
    The convolution2D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW or NHWC format, where N is batch size, C is the number of
    channels, H is the height of the feature, and W is the width of the feature.
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more details.
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.

    For each input :math:`X`, the equation is:

412
    ..  math::
413

414
        Out = \sigma (W \ast X + b)
415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438

    Where:

    * :math:`X`: Input value, a tensor with NCHW or NHWC format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

439
        ..  math::
440

441 442
            H_{out}&= \frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
443 444

    Args:
445
        x (Tensor): The input is 4-D Tensor with shape [N, C, H, W], the data type 
446
            of input is float16 or float32 or float64.
447
        weight (Tensor): The convolution kernel with shape [M, C/g, kH, kW], where M is
448 449
            the number of output channels, g is the number of groups, kH is the filter's
            height, kW is the filter's width. 
450
        bias (Tensor, optional): The bias with shape [M,].
451 452
        stride (int|list|tuple): The stride size. It means the stride in convolution. 
            If stride is a list/tuple, it must contain two integers, (stride_height, stride_width). 
453
            Otherwise, stride_height = stride_width = stride. Default: stride = 1.
454 455 456 457 458 459 460
        padding (string|int|list|tuple): The padding size. It means the number of zero-paddings
            on both sides for each dimension.If `padding` is a string, either 'VALID' or
            'SAME' which is the padding algorithm. If padding size is a tuple or list,
            it could be in three forms: `[pad_height, pad_width]` or
            `[pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`, and when 
            `data_format` is `"NCHW"`, `padding` can be in the form `[[0,0], [0,0], 
            [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
L
LielinJiang 已提交
461
            when `data_format` is `"NHWC"`, `padding` can be in the form
462 463
            `[[0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            Default: padding = 0.
464 465
        dilation (int|list|tuple): The dilation size. It means the spacing between the kernel
            points. If dilation is a list/tuple, it must contain two integers, (dilation_height, 
466 467
            dilation_width). Otherwise, dilation_height = dilation_width = dilation. 
            Default: dilation = 1.
C
cnn 已提交
468
        groups (int): The groups number of the Conv2D Layer. According to grouped
469 470 471 472 473 474 475 476 477 478 479 480 481
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1.
        data_format (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
        name(str, optional): For detailed information, please refer 
           to :ref:`api_guide_Name`. Usually name is no need to set and 
           None by default.

    Returns:
482
        A Tensor representing the conv2d result, whose data type is the same with input. 
483 484 485

    Raises:
        ValueError: If `data_format` is not "NCHW" or "NHWC".
486
        ValueError: If the channel dimension of the input is less than or equal to zero.
487
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
488
        ValueError: If `padding` is a list/tuple, but the element corresponding to the input's batch size is not 0 
489 490 491 492 493 494 495 496 497 498
            or the element corresponding to the input's channel is not 0.
        ShapeError: If the input is not 4-D Tensor.
        ShapeError: If the input's dimension size and filter's dimension size not equal.
        ShapeError: If the dimension size of input minus the size of `stride` is not 2.
        ShapeError: If the number of input channels is not equal to filter's channels * groups.
        ShapeError: If the number of output channels is not be divided by groups.

    Examples:
        .. code-block:: python

499
          import paddle
500 501
          import paddle.nn.functional as F

502 503
          x_var = paddle.randn((2, 3, 8, 8), dtype='float32')
          w_var = paddle.randn((6, 3, 3, 3), dtype='float32')
504 505 506 507

          y_var = F.conv2d(x_var, w_var)
          y_np = y_var.numpy()

508 509 510 511 512 513 514 515 516 517
          print(y_np.shape)
          # (2, 6, 6, 6)
    """
    # entry checks
    if data_format not in ["NCHW", "NHWC"]:
        raise ValueError("Attr(data_format) should be 'NCHW' or 'NHWC'. "
                         "Received Attr(data_format): {}.".format(data_format))

    channel_last = (data_format == "NHWC")
    channel_dim = -1 if channel_last else 1
518
    num_channels = x.shape[channel_dim]
519 520
    num_filters = weight.shape[0]
    if num_channels < 0:
521
        raise ValueError("The channel dimension of the input({}) "
522
                         "should be defined. Received: {}.".format(
523
                             x.shape, num_channels))
524 525 526 527
    if num_channels % groups != 0:
        raise ValueError(
            "the channel of input must be divisible by groups,"
            "received: the channel of input is {}, the shape of input is {}"
528
            ", the groups is {}".format(num_channels, x.shape, groups))
529 530 531 532 533 534
    if num_filters % groups != 0:
        raise ValueError(
            "the number of filters must be divisible by groups,"
            "received: the number of filters is {}, the shape of weight is {}"
            ", the groups is {}".format(num_filters, weight.shape, groups))

535 536 537 538 539
    cudnn_version = get_cudnn_version()

    use_cudnn = True if (core.is_compiled_with_cuda() and
                         cudnn_version is not None) else False

L
LielinJiang 已提交
540 541
    use_mkldnn = core.globals()["FLAGS_use_mkldnn"]

542 543 544 545 546 547
    # update attrs
    padding, padding_algorithm = _update_padding_nd(padding, channel_last, 2)
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')

    l_type = "conv2d"
L
LielinJiang 已提交
548 549
    if (num_channels == groups and num_channels != 1 and
            num_filters % num_channels == 0):
550
        l_type = 'depthwise_conv2d'
551 552 553 554 555 556 557
        if core.is_compiled_with_rocm():
            use_cudnn = True
        else:
            use_cudnn = False

    if (core.is_compiled_with_cuda() and get_flags("FLAGS_conv2d_disable_cudnn")
        ["FLAGS_conv2d_disable_cudnn"]):
558
        use_cudnn = False
559

L
LielinJiang 已提交
560 561 562
    return _conv_nd(x, weight, bias, stride, padding, padding_algorithm,
                    dilation, groups, data_format, channel_dim, l_type,
                    use_cudnn, use_mkldnn, name)
563 564


565
def conv1d_transpose(x,
566 567 568 569 570 571 572 573 574 575
                     weight,
                     bias=None,
                     stride=1,
                     padding=0,
                     output_padding=0,
                     groups=1,
                     dilation=1,
                     output_size=None,
                     data_format="NCL",
                     name=None):
576
    r"""
577 578 579 580 581 582 583 584 585 586 587 588 589 590
    The 1-D convolution transpose layer calculates the output based on the input,
    filter, and dilation, stride, padding. Input(Input) and output(Output)
    are in 'NCL' format or 'NLC' where N is batch size, C is the number of channels,
    L is the length of the feature. The details of convolution transpose
    layer, please refer to the following explanation and references
    `therein <https://arxiv.org/pdf/1603.07285.pdf>`_.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

W
whs 已提交
591
        Out = \sigma (W \ast X + b)
592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626

    Where:

    * :math:`X`: Input value, a 3-D Tensor with 'NCL' format or 'NLC' format.
    * :math:`W`: Filter value, a 3-D Tensor with 'MCK' format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D Tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, a 3-D Tensor with data format 'NCL' or 'NLC', the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, L_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, L_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, L_{out})`

        Where

        .. math::

           L^\prime_{out} &= (L_{in} - 1) * stride - pad_top - pad_bottom + dilation * (L_f - 1) + 1 + output_padding \\\\
           L_{out} &\in [ L^\prime_{out}, L^\prime_{out} + stride ]

    Note:
          The conv1d_transpose can be seen as the backward of the conv1d. For conv1d,
          when stride > 1, conv1d maps multiple input shape to the same output shape,
          so for conv1d_transpose, when stride > 1, input shape maps multiple output shape.
          If output_size is None, :math:`L_{out} = L^\prime_{out}`;
          else, the :math:`L_{out}` of the output size must between :math:`L^\prime_{out}`
627
          and :math:`L^\prime_{out} + stride`.
628 629 630 631 632 633 634 635 636

    Args:
        x(Tensor): 3-D tensor with [N, C, L] or [N, L, C] format,
                         its data type is float32 or float64.
        weight(Tensor): The convolution kernel, a Tensor with shape [C, M/g, K],
            where M is the number of output channels(filters), g is the number of groups,
            K is the size of the kernel.
        bias(Tensor, optional): The bias, a Tensor with shape [M, ].
        stride(int|tuple|list, optional): The stride size. It means the stride in transposed convolution.
637
            If stride is a list/tuple, it must contain one integer, `(stride_size)`.
638 639 640 641 642 643 644
            Default: stride = 1.
        padding(int|list|str|tuple, optional): The padding size. The padding argument effectively adds
             `dilation * (kernel - 1)` amount of zero-padding on both sides of input. If `padding` is a
             string, either 'VALID' or 'SAME' supported, which is the padding algorithm.
             If `padding` is a tuple or list, it could be in two forms:
             `[pad]` or `[pad_left, pad_right]`. Default: padding = 0.
        output_padding(int|list|tuple, optional): The count of zeros to be added to tail of each dimension.
645
             If it is a list/tuple, it must contain one integer. Default: 0.
646 647 648 649 650 651 652
        groups(int, optional): The groups number of the conv1d transpose function. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups = 1.
        dilation(int|tuple|list, optional): The dilation size. It means the spacing between the kernel points.
653
            If dilation is a list/tuple, it must contain one integer, `(dilation_size)`.
654 655
            Default: dilation = 1.
        output_size(int|tuple|list, optional): The output image size. If output size is a
656
            tuple/list, it must contain one integer, `(feature_length)`. None if use
657
            filter_size(shape of weight), padding, and stride to calculate output_size.
658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674
        data_format (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCL"`, `"NLC"`.
            The default is `"NCL"`. When it is `"NCL"`, the data is stored in the order of:
            `[batch_size, input_channels, input_length]`.
        name(str, optional): For detailed information, please refer 
           to :ref:`api_guide_Name`. Usually name is no need to set and 
           None by default.

    Returns:
        A  tensor representing the result of 1-D transpose convolution, whose
        data type is the same with input. And its shape is (num_batches, channels, length)
        when data_format is `"NCL"` and (num_batches, length, channels) when data_format is
        `"NLC"`.

    Raises:
        ValueError: If `data_format` is a string, but not "NCL" or "NLC".
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
675
        ValueError: If `padding` is a list/tuple, but the element corresponding to the input's batch size is not 0 
676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697
            or the element corresponding to the input's channel is not 0.
        ValueError: If `output_size` and filter_size are None at the same time.
        ValueError: If `output_padding` is greater than `stride`.
        ShapeError: If the input is not 3-D Tensor.
        ShapeError: If the input's dimension size and filter's dimension size not equal.
        ShapeError: If the dimension size of input minus the size of `stride` is not 1.
        ShapeError: If the number of input channels is not equal to filter's channels.
        ShapeError: If the size of `output_size` is not equal to that of `stride`.

    Examples:
        .. code-block:: python



          import paddle
          import paddle.nn.functional as F
          import numpy as np
          
          # shape: (1, 2, 4)
          x=np.array([[[4, 0, 9, 7],
                       [8, 0, 9, 2,]]]).astype(np.float32)
          # shape: (2, 1, 2)
W
whs 已提交
698
          w=np.array([[[7, 0]],
699 700 701
                      [[4, 2]]]).astype(np.float32)
          x_var = paddle.to_tensor(x)
          w_var = paddle.to_tensor(w)
702
          y_var = F.conv1d_transpose(x_var, w_var)
W
whs 已提交
703
          print(y_var)
704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722
          
          # [[[60. 16. 99. 75.  4.]]]
    """
    cudnn_version = get_cudnn_version()
    if cudnn_version is not None:
        use_cudnn = True
    else:
        use_cudnn = False

    if data_format not in ['NCL', 'NLC']:
        raise ValueError(
            "Attr(data_format) of conv2d_transpose got wrong value: "
            "received {}, but only 'NCL' or 'NLC' are supported.".format(
                data_format))
    channel_last = (data_format == "NLC")
    channel_dim = -1 if channel_last else 1

    num_channels = x.shape[channel_dim]
    if num_channels < 0:
723
        raise ValueError("The channel dimension of the input({}) "
724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740
                         "should be defined. Received: {}.".format(
                             x.shape, num_channels))
    if num_channels % groups != 0:
        raise ValueError(
            "the channel of input must be divisible by groups,"
            "received: the channel of input is {}, the shape of input is {}"
            ", the groups is {}".format(num_channels, x.shape, groups))

    # update attrs
    padding, padding_algorithm = _update_padding_nd(padding, channel_last, 1)

    if len(padding) == 2:
        padding = padding + [0] * 2
    elif len(padding) == 1:
        padding = padding + [0]
    else:
        raise ValueError(
741
            "The size of padding's dimension should 1 or 2. But got padding={}".
742 743 744 745 746 747 748 749
            format(padding))

    stride = utils.convert_to_list(stride, 1, 'stride') + [1]
    dilation = utils.convert_to_list(dilation, 1, 'dilation') + [1]

    if output_size is None:
        output_size = []
    else:
L
LielinJiang 已提交
750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770
        if output_padding != 0:
            raise ValueError('output_padding option is mutually exclusive with '
                             'output_size')
        if isinstance(output_size, (list, tuple, int)):
            output_size = utils.convert_to_list(output_size, 1,
                                                'output_size') + [1]
        else:
            raise ValueError(
                "output_size should be int, or list, tuple of ints")

    if output_padding == 0:
        output_padding = []
    else:
        output_padding = utils.convert_to_list(output_padding, 1,
                                               'output_padding') + [0]

    if len(output_padding) > 0 and output_padding[0] > stride[0]:
        raise ValueError(
            "The size of output_padding should not be greater than stride."
            "But got output_padding={} and stride={}".format(output_padding[0],
                                                             stride[0]))
771 772 773

    op_type = 'conv2d_transpose'
    num_filters = weight.shape[1]
L
LielinJiang 已提交
774 775
    if (num_channels == groups and num_channels != 1 and num_filters == 1 and
            not use_cudnn):
776 777 778 779 780 781 782 783 784 785
        op_type = 'depthwise_conv2d_transpose'
        use_cudnn = False

    squeeze_axis = -2 if channel_last else -1
    conv2d_data_format = "NHWC" if channel_last else "NCHW"

    x = nn.unsqueeze(input=x, axes=[squeeze_axis])
    weight = nn.unsqueeze(input=weight, axes=[-1])

    if in_dygraph_mode():
L
LielinJiang 已提交
786 787 788 789
        attrs = ('output_padding', output_padding, 'output_size', output_size,
                 'strides', stride, 'paddings', padding, 'padding_algorithm',
                 padding_algorithm, 'dilations', dilation, 'groups', groups,
                 'use_cudnn', use_cudnn, 'data_format', conv2d_data_format)
790 791 792 793 794 795
        out = getattr(core.ops, op_type)(x, weight, *attrs)
        if bias is not None:
            out = nn.elementwise_add(out, bias, axis=channel_dim)
    else:
        inputs = {'Input': [x], 'Filter': [weight]}
        attrs = {
L
LielinJiang 已提交
796
            'output_padding': output_padding,
797 798 799 800 801 802 803 804 805 806 807 808
            'output_size': output_size,
            'strides': stride,
            'paddings': padding,
            'padding_algorithm': padding_algorithm,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
            'data_format': conv2d_data_format
        }
        check_variable_and_dtype(x, 'input', ['float16', 'float32', 'float64'],
                                 'conv2d_transpose')
        helper = LayerHelper(op_type, **locals())
809
        dtype = helper.input_dtype(input_param_name='x')
810 811 812 813 814 815 816 817 818 819 820
        out = helper.create_variable_for_type_inference(dtype)
        outputs = {"Output": [out]}
        helper.append_op(
            type=op_type, inputs=inputs, outputs=outputs, attrs=attrs)
        if bias is not None:
            out = nn.elementwise_add(out, bias, axis=channel_dim)

    out = nn.squeeze(input=out, axes=[squeeze_axis])
    return out


821
def conv2d_transpose(x,
822 823 824
                     weight,
                     bias=None,
                     stride=1,
L
LielinJiang 已提交
825 826 827
                     padding=0,
                     output_padding=0,
                     dilation=1,
828
                     groups=1,
L
LielinJiang 已提交
829
                     output_size=None,
830
                     data_format='NCHW',
831
                     name=None):
832
    r"""
S
swtkiwi 已提交
833

834 835 836 837 838 839 840 841 842 843 844
    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW or NHWC format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
    layer, please refer to the following explanation and references
    `therein <https://arxiv.org/pdf/1603.07285.pdf>`_.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
L
LielinJiang 已提交
845
    See more detail in :ref:`api_nn_conv_ConvTranspose2d` .
846 847 848

    For each input :math:`X`, the equation is:

849
    ..  math::
850

851
        Out = \sigma (W \ast X + b)
852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875

    Where:

    * :math:`X`: Input value, a 4-D Tensor with NCHW or NHWC format.
    * :math:`W`: Filter value, a 4-D Tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D Tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, a 4-D Tensor with data format 'NCHW' or 'NHWC', the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

876
        ..  math::
877 878 879 880 881 882 883 884 885 886 887 888 889

           H^\prime_{out} &= (H_{in} - 1) * strides[0] - pad_height_top - pad_height_bottom + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - pad_width_left - pad_width_right + dilations[1] * (W_f - 1) + 1 \\\\
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] ] \\\\
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] ]

    Note:
          The conv2d_transpose can be seen as the backward of the conv2d. For conv2d, 
          when stride > 1, conv2d maps multiple input shape to the same output shape, 
          so for conv2d_transpose, when stride > 1, input shape maps multiple output shape.
          If output_size is None, :math:`H_{out} = H^\prime_{out}, W_{out} = W^\prime_{out}`; 
          else, the :math:`H_{out}` of the output size must between :math:`H^\prime_{out}` 
          and :math:`H^\prime_{out} + strides[0]`, and the :math:`W_{out}` of the output size must 
890
          between :math:`W^\prime_{out}` and :math:`W^\prime_{out} + strides[1]`.
891 892

    Args:
L
LielinJiang 已提交
893
        x(Tensor): 4-D Tensor with [N, C, H, W] or [N, H, W, C] format,
894
            whose data type is float32 or float64.
L
LielinJiang 已提交
895
        weight(Tensor): The convolution kernel, a Tensor with shape [C, M/g, kH, kW],
896 897
            where M is the number of output channels(filters), g is the number of groups,
            kH is the height of the kernel, and kW is the width of the kernel.
L
LielinJiang 已提交
898 899
        bias(Tensor, optional): The bias, a Tensor with shape [M, ].
        stride(int|list|tuple, optional): The stride size. It means the stride in transposed convolution. 
900
            If stride is a list/tuple, it must contain two integers, (stride_height, stride_width). 
L
LielinJiang 已提交
901
            Otherwise, stride_height = stride_width = stride. Default: stride = 1.
902 903 904 905 906
        padding(str|int|list|tuple, optional): The padding size. It means the number of zero-paddings 
            on both sides for each dimension. If `padding` is a string, either 'VALID' or 
            'SAME' which is the padding algorithm. If padding size is a tuple or list,
            it could be in three forms: `[pad_height, pad_width]` or 
            `[pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`,
L
LielinJiang 已提交
907
            and when `data_format` is `"NCHW"`, `padding` can be in the form 
908
            `[[0,0], [0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
L
LielinJiang 已提交
909
            when `data_format` is `"NHWC"`, `padding` can be in the form 
910 911
            `[[0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            Default: padding = 0.
L
LielinJiang 已提交
912 913
        output_padding(int|list|tuple, optional): Additional size added to one side
            of each dimension in the output shape. Default: 0.
C
cnn 已提交
914
        groups(int, optional): The groups number of the Conv2D transpose layer. Inspired by
915 916 917 918 919
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups = 1.
920
        dilation(int|list|tuple, optional): The dilation size. It means the spacing between the kernel points. 
921
            If dilation is a list/tuple, it must contain two integers, (dilation_height, dilation_width). 
922
            Otherwise, dilation_height = dilation_width = dilation. Default: dilation = 1.
L
LielinJiang 已提交
923
        output_size(int|tuple|list, optional): The output image size. If output size is a
924
            tuple/list, it must contain two integers, (image_height, image_width). None if use
925
            filter_size(shape of weight), padding, and stride to calculate output_size.
926 927 928 929 930 931 932 933 934
        data_format (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
        name(str, optional): For detailed information, please refer 
           to :ref:`api_guide_Name`. Usually name is no need to set and 
           None by default.

    Returns:
935
        A Tensor representing the conv2d_transpose, whose
936
        data type is the same with input and shape is (num_batches, channels, out_h, 
L
LielinJiang 已提交
937 938
        out_w) or (num_batches, out_h, out_w, channels). The tensor variable storing 
        transposed convolution result.
939 940 941 942

    Raises:
        ValueError: If `data_format` is not "NCHW" or "NHWC".
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
943
        ValueError: If `padding` is a list/tuple, but the element corresponding to the input's batch size is not 0 
944
            or the element corresponding to the input's channel is not 0.
L
LielinJiang 已提交
945
        ValueError: If `output_size` and kernel_size are None at the same time.
946 947 948 949 950 951 952 953 954
        ShapeError: If the input is not 4-D Tensor.
        ShapeError: If the input's dimension size and filter's dimension size not equal.
        ShapeError: If the dimension size of input minus the size of `stride` is not 2.
        ShapeError: If the number of input channels is not equal to filter's channels.
        ShapeError: If the size of `output_size` is not equal to that of `stride`.

    Examples:
        .. code-block:: python

L
LielinJiang 已提交
955 956
          import paddle
          import paddle.nn.functional as F
957

958 959
          x_var = paddle.randn((2, 3, 8, 8), dtype='float32')
          w_var = paddle.randn((3, 6, 3, 3), dtype='float32')
960

961
          y_var = F.conv2d_transpose(x_var, w_var)
L
LielinJiang 已提交
962
          y_np = y_var.numpy()
963

964
          print(y_np.shape)
965 966 967 968 969 970 971 972 973 974
          # (2, 6, 10, 10)
    """

    if data_format not in ['NCHW', 'NHWC']:
        raise ValueError(
            "Attr(data_format) of conv2d_transpose got wrong value: "
            "received {}, but only 'NCHW' or 'NHWC' are supported.".format(
                data_format))
    channel_last = (data_format == "NHWC")
    channel_dim = -1 if channel_last else 1
L
LielinJiang 已提交
975
    num_channels = x.shape[channel_dim]
976
    if num_channels < 0:
977
        raise ValueError("The channel dimension of the input({}) "
978
                         "should be defined. Received: {}.".format(
L
LielinJiang 已提交
979
                             x.shape, num_channels))
980 981 982 983
    if num_channels % groups != 0:
        raise ValueError(
            "the channel of input must be divisible by groups,"
            "received: the channel of input is {}, the shape of input is {}"
L
LielinJiang 已提交
984 985 986 987 988 989
            ", the groups is {}".format(num_channels, x.shape, groups))

    cudnn_version = get_cudnn_version()

    use_cudnn = True if (core.is_compiled_with_cuda() and
                         cudnn_version is not None) else False
990 991 992 993 994

    # update attrs
    padding, padding_algorithm = _update_padding_nd(padding, channel_last, 2)
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
L
LielinJiang 已提交
995

996 997 998
    if output_size is None:
        output_size = []
    else:
L
LielinJiang 已提交
999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012
        if output_padding != 0:
            raise ValueError('output_padding option is mutually exclusive with '
                             'output_size')
        if isinstance(output_size, (list, tuple, int)):
            output_size = utils.convert_to_list(output_size, 2, 'output_size')
        else:
            raise ValueError(
                "output_size should be int, or list, tuple of ints")

    if output_padding == 0:
        output_padding = []
    else:
        output_padding = utils.convert_to_list(output_padding, 2,
                                               'output_padding')
1013 1014 1015

    op_type = 'conv2d_transpose'
    num_filters = weight.shape[1]
L
LielinJiang 已提交
1016
    if (num_channels == groups and num_channels != 1 and num_filters == 1):
1017
        op_type = 'depthwise_conv2d_transpose'
L
LielinJiang 已提交
1018
        use_cudnn = False
1019 1020

    if in_dygraph_mode():
L
LielinJiang 已提交
1021 1022 1023 1024 1025
        attrs = ('output_padding', output_padding, 'output_size', output_size,
                 'strides', stride, 'paddings', padding, 'padding_algorithm',
                 padding_algorithm, 'dilations', dilation, 'groups', groups,
                 'use_cudnn', use_cudnn, 'data_format', data_format)
        pre_bias = getattr(core.ops, op_type)(x, weight, *attrs)
1026
        if bias is not None:
L
LielinJiang 已提交
1027
            out = nn.elementwise_add(pre_bias, bias, axis=channel_dim)
1028
        else:
L
LielinJiang 已提交
1029
            out = pre_bias
1030
    else:
L
LielinJiang 已提交
1031
        inputs = {'Input': [x], 'Filter': [weight]}
1032
        attrs = {
L
LielinJiang 已提交
1033
            'output_padding': output_padding,
1034 1035 1036 1037 1038 1039 1040 1041 1042
            'output_size': output_size,
            'strides': stride,
            'paddings': padding,
            'padding_algorithm': padding_algorithm,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
            'data_format': data_format
        }
L
LielinJiang 已提交
1043
        check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
1044 1045
                                 'conv2d_transpose')
        helper = LayerHelper(op_type, **locals())
L
LielinJiang 已提交
1046
        pre_bias = helper.create_variable_for_type_inference(x.dtype)
1047 1048 1049
        outputs = {"Output": [pre_bias]}
        helper.append_op(
            type=op_type, inputs=inputs, outputs=outputs, attrs=attrs)
L
LielinJiang 已提交
1050

1051
        if bias is not None:
L
LielinJiang 已提交
1052
            out = nn.elementwise_add(pre_bias, bias, axis=channel_dim)
1053
        else:
L
LielinJiang 已提交
1054 1055
            out = pre_bias

1056 1057 1058
    return out


1059
def conv3d(x,
1060 1061 1062
           weight,
           bias=None,
           stride=1,
1063
           padding=0,
1064 1065 1066 1067
           dilation=1,
           groups=1,
           data_format="NCDHW",
           name=None):
1068
    r"""
S
swtkiwi 已提交
1069

1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080
    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
    Output(Output) are in NCDHW or NDHWC format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.

    For each input :math:`X`, the equation is:

1081
    ..  math::
1082

1083
        Out = \sigma (W \ast X + b)
1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106

    In the above equation:

    * :math:`X`: Input value, a tensor with NCDHW or NDHWC format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

1107
        ..  math::
1108 1109 1110 1111 1112 1113

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
1114
        x (Tensor): The input is 5-D Tensor with shape [N, C, D, H, W], the data 
1115
            type of input is float16 or float32 or float64.
1116
        weight (Tensor): The convolution kernel, a Tensor with shape [M, C/g, kD, kH, kW],
1117 1118
            where M is the number of filters(output channels), g is the number of groups,
            kD, kH, kW are the filter's depth, height and width respectively.
1119
        bias (Tensor, optional): The bias, a Tensor of shape [M, ].
1120 1121
        stride (int|list|tuple): The stride size. It means the stride in convolution. If stride is a 
            list/tuple, it must contain three integers, (stride_depth, stride_height, stride_width). 
1122
            Otherwise, stride_depth = stride_height = stride_width = stride. Default: stride = 1.
1123 1124 1125 1126 1127
        padding (string|int|list|tuple): The padding size. It means the number of zero-paddings 
            on both sides for each dimension. If `padding` is a string, either 'VALID' or
            'SAME' which is the padding algorithm. If padding size is a tuple or list,
            it could be in three forms: `[pad_depth, pad_height, pad_width]` or
            `[pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`,
L
LielinJiang 已提交
1128
            and when `data_format` is `"NCDHW"`, `padding` can be in the form
1129
            `[[0,0], [0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
L
LielinJiang 已提交
1130
            when `data_format` is `"NDHWC"`, `padding` can be in the form
1131 1132
            `[[0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            Default: padding = 0.
1133 1134
        dilation (int|list|tuple): The dilation size. It means the spacing between the kernel points. 
            If dilation is a list/tuple, it must contain three integers, (dilation_depth, dilation_height,
1135 1136
            dilation_width). Otherwise, dilation_depth = dilation_height = dilation_width = dilation. 
            Default: dilation = 1.
C
cnn 已提交
1137
        groups (int): The groups number of the Conv3D Layer. According to grouped
1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
        data_format (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
        name(str|None): For detailed information, please refer 
           to :ref:`api_guide_Name`. Usually name is no need to set and 
           None by default.

    Returns:
1151
        A Tensor representing the conv3d, whose data type is 
1152 1153
        the same with input. If act is None, the tensor storing the 
        convolution result, and if act is not None, the tensor storing 
1154 1155 1156 1157 1158
        convolution and non-linearity activation result.

    Examples:
        .. code-block:: python

1159 1160
            import paddle
            import paddle.nn.functional as F
1161

1162 1163
            x_var = paddle.randn((2, 3, 8, 8, 8), dtype='float32')
            w_var = paddle.randn((6, 3, 3, 3, 3), dtype='float32')
1164

1165 1166
            y_var = F.conv3d(x_var, w_var)
            y_np = y_var.numpy()
1167

1168
            print(y_np.shape)
1169 1170 1171 1172 1173 1174 1175 1176 1177 1178
            # (2, 6, 6, 6, 6)
    """
    # entry check
    if data_format not in ["NCDHW", "NDHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCDHW' or 'NDHWC'. Received "
            "Attr(data_format): {}.".format(data_format))

    channel_last = (data_format == "NDHWC")
    channel_dim = -1 if channel_last else 1
1179
    num_channels = x.shape[channel_dim]
1180 1181 1182
    num_filters = weight.shape[0]
    if num_channels < 0:
        raise ValueError(
1183
            "The channel dimension of the input({}) should be defined. "
1184
            "Received: {}.".format(x.shape, num_channels))
1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195
    if num_channels % groups != 0:
        raise ValueError(
            "The number of input channels must be divisible by Attr(groups). "
            "Received: number of channels({}), groups({}).".format(num_channels,
                                                                   groups))
    if num_filters % groups != 0:
        raise ValueError(
            "The number of filters must be divisible by Attr(groups). "
            "Received: number of filters({}), groups({}).".format(num_filters,
                                                                  groups))

1196 1197 1198 1199
    cudnn_version = get_cudnn_version()
    use_cudnn = True if (core.is_compiled_with_cuda() and
                         cudnn_version is not None) else False

1200 1201 1202 1203 1204
    padding, padding_algorithm = _update_padding_nd(padding, channel_last, 3)
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
    op_type = "conv3d"

L
LielinJiang 已提交
1205 1206 1207
    return _conv_nd(x, weight, bias, stride, padding, padding_algorithm,
                    dilation, groups, data_format, channel_dim, op_type,
                    use_cudnn, False, name)
1208 1209


1210
def conv3d_transpose(x,
1211 1212 1213
                     weight,
                     bias=None,
                     stride=1,
L
LielinJiang 已提交
1214 1215
                     padding=0,
                     output_padding=0,
1216
                     groups=1,
L
LielinJiang 已提交
1217 1218
                     dilation=1,
                     output_size=None,
1219
                     data_format='NCDHW',
1220
                     name=None):
1221
    r"""
L
LielinJiang 已提交
1222
    The convolution3d transpose layer calculates the output based on the input,
1223 1224 1225 1226 1227 1228 1229 1230 1231 1232
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCDHW or NDHWC format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <https://arxiv.org/pdf/1603.07285.pdf>`_.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
L
LielinJiang 已提交
1233
    See more detail in :ref:`api_nn_conv_ConvTranspose3d` .
1234 1235 1236

    For each input :math:`X`, the equation is:

1237
    ..  math::
1238

1239
        Out = \sigma (W \ast X + b)
1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263

    In the above equation:

    * :math:`X`: Input value, a Tensor with NCDHW or NDHWC format.
    * :math:`W`: Filter value, a Tensor with MCDHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D Tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

1264
        ..  math::
1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281

           D^\prime_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H^\prime_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1 \\\\
           D_{out} &\in [ D^\prime_{out}, D^\prime_{out} + strides[0] ] \\\\
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[1] ] \\\\
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[2] ]

    Note:
          The conv3d_transpose can be seen as the backward of the conv3d. For conv3d, 
          when stride > 1, conv3d maps multiple input shape to the same output shape, 
          so for conv3d_transpose, when stride > 1, input shape maps multiple output shape.
          If output_size is None, :math:`H_{out} = H^\prime_{out}, :math:`H_{out} = \
          H^\prime_{out}, W_{out} = W^\prime_{out}`; else, the :math:`D_{out}` of the output 
          size must between :math:`D^\prime_{out}` and :math:`D^\prime_{out} + strides[0]`, 
          the :math:`H_{out}` of the output size must between :math:`H^\prime_{out}` 
          and :math:`H^\prime_{out} + strides[1]`, and the :math:`W_{out}` of the output size must 
1282
          between :math:`W^\prime_{out}` and :math:`W^\prime_{out} + strides[2]`.
1283 1284

    Args:
L
LielinJiang 已提交
1285
        x(Tensor): The input is 5-D Tensor with shape [N, C, D, H, W] or [N, D, H, W, C], the data type 
1286
            of input is float32 or float64.
L
LielinJiang 已提交
1287
        weight (Tensor): The convolution kernel, a Tensor with shape [C, M/g, kD, kH, kW],
1288 1289
            where M is the number of filters(output channels), g is the number of groups,
            kD, kH, kW are the filter's depth, height and width respectively.
L
LielinJiang 已提交
1290 1291
        bias (Tensor, optional): The bias, a Tensor of shape [M, ].
        stride(int|list|tuple, optional): The stride size. It means the stride in transposed convolution. 
1292
            If stride is a list/tuple, it must contain three integers, (stride_depth, stride_height, 
L
LielinJiang 已提交
1293 1294
            stride_width). Otherwise, stride_depth = stride_height = stride_width = stride. 
            Default: stride = 1.
1295 1296 1297 1298
        padding (string|int|list|tuple, optional): The padding size. It means the number of zero-paddings 
            on both sides for each dimension. If `padding` is a string, either 'VALID' or
            'SAME' which is the padding algorithm. If padding size is a tuple or list,
            it could be in three forms: `[pad_depth, pad_height, pad_width]` or
1299
            `[pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`,
L
LielinJiang 已提交
1300
            and when `data_format` is `"NCDHW"`, `padding` can be in the form
1301
            `[[0,0], [0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
L
LielinJiang 已提交
1302
            when `data_format` is `"NDHWC"`, `padding` can be in the form
1303 1304
            `[[0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            Default: padding = 0.
L
LielinJiang 已提交
1305 1306
        output_padding(int|list|tuple, optional): Additional size added to one side
            of each dimension in the output shape. Default: 0.
C
cnn 已提交
1307
        groups(int, optional): The groups number of the Conv3D transpose layer. Inspired by
1308 1309 1310 1311 1312
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
1313
        dilation(int|list|tuple, optional): The dilation size. It means the spacing between the kernel points. 
1314
            If dilation is a list/tuple, it must contain three integers, (dilation_depth, dilation_height, 
1315 1316
            dilation_width). Otherwise, dilation_depth = dilation_height = dilation_width = dilation. 
            Default: dilation = 1.
L
LielinJiang 已提交
1317
        output_size(int|list|tuple, optional): The output image size. If output size is a
1318
            list/tuple, it must contain three integers, (image_depth, image_height, image_width).
1319
            None if use filter_size(shape of weight), padding, and stride to calculate output_size.
1320 1321 1322 1323
        data_format (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
1324 1325 1326 1327 1328
        name(str, optional): For detailed information, please refer 
           to :ref:`api_guide_Name`. Usually name is no need to set and 
           None by default.

    Returns:
1329
        A Tensor representing the conv3d_transpose, whose data
1330 1331 1332 1333 1334 1335 1336 1337
        type is the same with input and shape is (num_batches, channels, out_d, out_h, 
        out_w) or (num_batches, out_d, out_h, out_w, channels). If act is None, the tensor 
        variable storing the transposed convolution result, and if act is not None, the tensor 
        variable storing transposed convolution and non-linearity activation result.

    Raises:
        ValueError: If `data_format` is not "NCDHW" or "NDHWC".
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
1338
        ValueError: If `padding` is a list/tuple, but the element corresponding to the input's batch size is not 0 
1339
            or the element corresponding to the input's channel is not 0.
L
LielinJiang 已提交
1340
        ValueError: If `output_size` and kernel_size are None at the same time.
1341 1342 1343 1344 1345 1346 1347 1348
        ShapeError: If the input is not 5-D Tensor.
        ShapeError: If the input's dimension size and filter's dimension size not equal.
        ShapeError: If the dimension size of input minus the size of `stride` is not 2.
        ShapeError: If the number of input channels is not equal to filter's channels.
        ShapeError: If the size of `output_size` is not equal to that of `stride`.

    Examples:
       .. code-block:: python
L
LielinJiang 已提交
1349 1350
          
          import paddle
1351 1352
          import paddle.nn.functional as F

1353 1354
          x_var = paddle.randn((2, 3, 8, 8, 8), dtype='float32')
          w_var = paddle.randn((3, 6, 3, 3, 3), dtype='float32')
1355

1356
          y_var = F.conv3d_transpose(x_var, w_var)
L
LielinJiang 已提交
1357
          y_np = y_var.numpy()
1358

1359
          print(y_np.shape)
1360 1361 1362 1363 1364 1365 1366 1367 1368 1369
          # (2, 6, 10, 10, 10)
    """
    # entry checks
    if data_format not in ["NCDHW", "NDHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCDHW' or 'NDHWC'. Received "
            "Attr(data_format): {}.".format(data_format))

    channel_last = (data_format == "NDHWC")
    channel_dim = -1 if channel_last else 1
L
LielinJiang 已提交
1370
    num_channels = x.shape[channel_dim]
1371 1372 1373
    num_filters = weight.shape[1]
    if num_channels < 0:
        raise ValueError(
1374
            "The channel dimension of the input({}) should be defined. "
L
LielinJiang 已提交
1375
            "Received: {}.".format(x.shape, num_channels))
1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387
    if num_channels % groups != 0:
        raise ValueError(
            "The number of input channels must be divisible by Attr(groups). "
            "Received: number of channels({}), groups({}).".format(num_channels,
                                                                   groups))

    padding, padding_algorithm = _update_padding_nd(padding, channel_last, 3)
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
    if output_size is None:
        output_size = []
    else:
L
LielinJiang 已提交
1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407
        if output_padding != 0:
            raise ValueError('output_padding option is mutually exclusive with '
                             'output_size')
        if isinstance(output_size, (list, tuple, int)):
            output_size = utils.convert_to_list(output_size, 3, 'output_size')
        else:
            raise ValueError(
                "output_size should be int, or list, tuple of ints")

    if output_padding == 0:
        output_padding = []
    else:
        output_padding = utils.convert_to_list(output_padding, 3,
                                               'output_padding')

    cudnn_version = get_cudnn_version()

    #TODO(LielinJiang): whether to use cudnn according to the version of cudnn
    use_cudnn = True if (core.is_compiled_with_cuda() and
                         cudnn_version is not None) else False
1408 1409 1410 1411 1412

    op_type = 'conv3d_transpose'
    data_format_ = "NHWC" if channel_last else "NCHW"

    if in_dygraph_mode():
L
LielinJiang 已提交
1413 1414 1415 1416 1417
        attrs = ('output_padding', output_padding, 'output_size', output_size,
                 'paddings', padding, "padding_algorithm", padding_algorithm,
                 'strides', stride, 'dilations', dilation, 'groups', groups,
                 'use_cudnn', use_cudnn, "data_format", data_format_)
        pre_bias = getattr(core.ops, op_type)(x, weight, *attrs)
1418
        if bias is not None:
L
LielinJiang 已提交
1419
            out = nn.elementwise_add(pre_bias, bias, axis=channel_dim)
1420
        else:
L
LielinJiang 已提交
1421
            out = pre_bias
1422
    else:
L
LielinJiang 已提交
1423
        inputs = {'Input': [x], 'Filter': [weight]}
1424
        attrs = {
L
LielinJiang 已提交
1425
            'output_padding': output_padding,
1426 1427 1428 1429 1430 1431 1432 1433 1434 1435
            'output_size': output_size,
            'paddings': padding,
            "padding_algorithm": padding_algorithm,
            'strides': stride,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
            "data_format": data_format_
        }
        helper = LayerHelper(op_type, **locals())
L
LielinJiang 已提交
1436 1437
        check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                                 'conv3d')
1438

L
LielinJiang 已提交
1439
        pre_bias = helper.create_variable_for_type_inference(x.dtype)
1440 1441 1442 1443 1444
        outputs = {"Output": [pre_bias]}

        helper.append_op(
            type=op_type, inputs=inputs, outputs=outputs, attrs=attrs)
        if bias is not None:
L
LielinJiang 已提交
1445
            out = nn.elementwise_add(pre_bias, bias, axis=channel_dim)
1446
        else:
L
LielinJiang 已提交
1447
            out = pre_bias
1448 1449

    return out