expand_v2_op.cc 12.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/expand_v2_op.h"
#include <memory>
#include <string>
#include <vector>

namespace paddle {
namespace operators {

using framework::Tensor;

class ExpandV2Op : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(framework::InferShapeContext* ctx) const override {
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "ExpandV2");
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "ExpandV2");
    auto x_dims = ctx->GetInputDim("X");
    auto expand_shape = ctx->Attrs().Get<std::vector<int>>("shape");

    if (expand_shape.size() == 0) {
      expand_shape = std::vector<int>(x_dims.size(), -1);
    }

    PADDLE_ENFORCE_GE(
        expand_shape.size(), static_cast<size_t>(x_dims.size()),
        platform::errors::InvalidArgument(
            "The number of elements (%d) of 'shape' for "
            "expand_v2 op must be greater than or equal to the rank "
            "(%d) of the input.",
            expand_shape.size(), static_cast<size_t>(x_dims.size())));
    PADDLE_ENFORCE_LE(expand_shape.size(), MAX_RANK_SUPPORTED,
                      platform::errors::InvalidArgument(
                          "The number of elements (%d) of 'shape' for "
                          "must not be greater than %d.",
                          expand_shape.size(), MAX_RANK_SUPPORTED));
    PADDLE_ENFORCE_GE(expand_shape.size(), 1,
                      platform::errors::InvalidArgument(
                          "The number of elements (%d) of 'shape' for "
                          "must be a positive integer.",
                          expand_shape.size()));

    auto out_rank =
        std::max(static_cast<size_t>(x_dims.size()), expand_shape.size());
    std::vector<int64_t> out_shape(out_rank);
    auto x_dim_vec = framework::vectorize<int>(x_dims);
    auto diff = expand_shape.size() - x_dim_vec.size();
    x_dim_vec.insert(x_dim_vec.begin(), diff, -1);
    for (size_t i = 0; i < expand_shape.size(); ++i) {
      if (x_dims[i] == -1) {
        out_shape[i] = -1;
      } else if (expand_shape[i] == -1) {
        out_shape[i] = x_dims[i];
L
lilong12 已提交
69 70 71
      } else if (expand_shape[i] == -2) {
        // We use -2 to represent the element in expand_shape is a var.
        out_shape[i] = -1;
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
      } else {
        PADDLE_ENFORCE_GT(
            expand_shape[i], 0,
            platform::errors::InvalidArgument(
                "The %uth element of 'shape' for expand_v2 op must be "
                "greater than 0, but the value given is %d.",
                i, expand_shape[i]));
        out_shape[i] = expand_shape[i];
      }
    }

    ctx->SetOutputDim("Out", framework::make_ddim(out_shape));
    if (out_shape[0] == x_dims[0]) {
      ctx->ShareLoD("X", "Out");
    }
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
92 93 94 95 96 97 98 99 100 101 102
    auto input_data_type =
        framework::OperatorWithKernel::IndicateVarDataType(ctx, "X");

#ifdef PADDLE_WITH_MKLDNN
    if (this->CanMKLDNNBeUsed(ctx, input_data_type)) {
      return framework::OpKernelType(input_data_type, ctx.GetPlace(),
                                     framework::DataLayout::kMKLDNN,
                                     framework::LibraryType::kMKLDNN);
    }
#endif
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
  }

  framework::OpKernelType GetKernelTypeForVar(
      const std::string& var_name, const Tensor& tensor,
      const framework::OpKernelType& expected_kernel_type) const override {
    if (var_name == "expand_shapes_tensor" || var_name == "Shape") {
      return expected_kernel_type;
    }
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   tensor.place(), tensor.layout());
  }
};

class ExpandV2OpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X",
             "(Tensor, default Tensor<float>). A tensor with rank in [1, 6]."
             "X is the input to be expanded.");
    AddInput("Shape",
             "(Tensor<int>), optional). If provided, expand according to "
             "this given Shape. It has a higher priority than "
             "expand_shapes_tensor and the shape attribute.")
        .AsDispensable();
    AddInput("expand_shapes_tensor",
             "(Tensor Tensor<int>), epxanded shape for X."
             "It has a higher priority than shape attribute, but a lower "
             "priority than the input Shape")
        .AsDuplicable()
        .AsDispensable();
    AddOutput("Out",
              "(Tensor, default Tensor<float>). A tensor with rank in [1, 6]."
              "The rank of Output(Out) have the same with Input(X). "
              "After expanding, size of each dimension of Output(Out) is equal "
              "to size of the corresponding dimension of Input(X) multiplying "
              "the corresponding value given by Attr(expand_times).");
    AddAttr<std::vector<int>>("shape", "The expanded shape for each dimension.")
        .SetDefault({});
141 142
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
143 144
        .SetDefault(false)
        .AsExtra();
145 146 147 148
    AddAttr<std::string>(
        "mkldnn_data_type",
        "(string, default \"float32\"). Data type of mkldnn kernel")
        .SetDefault("float32")
149 150
        .InEnum({"float32", "bfloat16"})
        .AsExtra();
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
    AddComment(R"DOC(
Expand the input to the given shape. The rank of X
should be in [1, 6] and size of 'shape' must be in [1, 6] also.
Following is a using case:

Input(X) is a 3-D tensor with shape [2, 3, 1]:

        [
           [[1], [2], [3]],
           [[4], [5], [6]]
        ]

Attr(shape):  [2, 6, 2]

Output(Out) is a 3-D tensor with shape [2, 6, 2]:

        [
            [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
            [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
        ]

)DOC");
  }
};

class ExpandV2GradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(framework::InferShapeContext* ctx) const override {
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "ExpandV2Grad");
    OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Out")), "Input",
                   framework::GradVarName("Out"), "ExpandV2Grad");

    auto x_dims = ctx->GetInputDim("X");
    std::vector<int> expand_shape = ctx->Attrs().Get<std::vector<int>>("shape");
    if (expand_shape.size() == 0) {
      expand_shape = std::vector<int>(x_dims.size(), -1);
    }

    auto out_dims = ctx->GetInputDim(framework::GradVarName("Out"));
    auto x_dim_vec = framework::vectorize<int>(x_dims);
    auto diff = expand_shape.size() - x_dim_vec.size();
    x_dim_vec.insert(x_dim_vec.begin(), diff, -1);

    for (size_t i = 0; i < expand_shape.size(); ++i) {
L
lilong12 已提交
198
      if (expand_shape[i] < 0 || x_dim_vec[i] == -1) {
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
        continue;
      } else {
        if (ctx->IsRuntime()) {
          PADDLE_ENFORCE_EQ(
              expand_shape[i], out_dims[i],
              platform::errors::InvalidArgument(
                  "The size (%d) of the dimension %d of Input(Out@GRAD) should "
                  "be equal to the crroresponding dimension size of shape(%d).",
                  out_dims[i], i, expand_shape[i]));
        }
      }
    }
    auto x_grad_name = framework::GradVarName("X");

    if (ctx->HasOutput(x_grad_name)) {
      ctx->SetOutputDim(x_grad_name, x_dims);
    }
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
221 222 223 224 225 226 227 228 229 230 231
    auto input_data_type = framework::OperatorWithKernel::IndicateVarDataType(
        ctx, framework::GradVarName("Out"));

#ifdef PADDLE_WITH_MKLDNN
    if (this->CanMKLDNNBeUsed(ctx, input_data_type)) {
      return framework::OpKernelType(input_data_type, ctx.GetPlace(),
                                     framework::DataLayout::kMKLDNN,
                                     framework::LibraryType::kMKLDNN);
    }
#endif
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
  }

  framework::OpKernelType GetKernelTypeForVar(
      const std::string& var_name, const Tensor& tensor,
      const framework::OpKernelType& expected_kernel_type) const override {
    if (var_name == "expand_shapes_tensor" || var_name == "Shape") {
      return expected_kernel_type;
    }
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   tensor.place(), tensor.layout());
  }
};

template <typename T>
class ExpandV2GradOpMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> op) const override {
    op->SetType("expand_v2_grad");
    op->SetInput("X", this->Input("X"));
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetInput("expand_shapes_tensor", this->Input("expand_shapes_tensor"));
    op->SetInput("Shape", this->Input("Shape"));
    op->SetAttrMap(this->Attrs());
  }
};

262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
template <typename T>
class ExpandV2DoubleGradOpMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> op) const override {
    op->SetType("expand_v2");
    op->SetInput("X", this->OutputGrad(framework::GradVarName("X")));
    op->SetOutput("Out", this->InputGrad(framework::GradVarName("Out")));
    if (this->HasInput("expand_shapes_tensor")) {
      op->SetInput("expand_shapes_tensor", this->Input("expand_shapes_tensor"));
    }
    if (this->HasInput("Shape")) {
      op->SetInput("Shape", this->Input("Shape"));
    }
    op->SetAttrMap(this->Attrs());
  }
};

282 283 284 285 286 287 288 289 290 291
DECLARE_NO_NEED_BUFFER_VARS_INFERER(ExpandV2GradNoNeedBufVarsInferer, "X");

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(expand_v2, ops::ExpandV2Op, ops::ExpandV2OpMaker,
                  ops::ExpandV2GradOpMaker<paddle::framework::OpDesc>,
                  ops::ExpandV2GradOpMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(expand_v2_grad, ops::ExpandV2GradOp,
292 293
                  ops::ExpandV2DoubleGradOpMaker<paddle::framework::OpDesc>,
                  ops::ExpandV2DoubleGradOpMaker<paddle::imperative::OpBase>,
294 295 296 297 298 299 300 301 302 303 304 305 306
                  ops::ExpandV2GradNoNeedBufVarsInferer);
REGISTER_OP_CPU_KERNEL(
    expand_v2, ops::ExpandV2Kernel<paddle::platform::CPUDeviceContext, float>,
    ops::ExpandV2Kernel<paddle::platform::CPUDeviceContext, double>,
    ops::ExpandV2Kernel<paddle::platform::CPUDeviceContext, int>,
    ops::ExpandV2Kernel<paddle::platform::CPUDeviceContext, int64_t>,
    ops::ExpandV2Kernel<paddle::platform::CPUDeviceContext, bool>);
REGISTER_OP_CPU_KERNEL(
    expand_v2_grad,
    ops::ExpandV2GradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::ExpandV2GradKernel<paddle::platform::CPUDeviceContext, double>,
    ops::ExpandV2GradKernel<paddle::platform::CPUDeviceContext, int>,
    ops::ExpandV2GradKernel<paddle::platform::CPUDeviceContext, int64_t>);
307
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
REGISTER_OP_CUDA_KERNEL(
    expand_v2, ops::ExpandV2Kernel<paddle::platform::CUDADeviceContext, float>,
    ops::ExpandV2Kernel<paddle::platform::CUDADeviceContext, double>,
    ops::ExpandV2Kernel<paddle::platform::CUDADeviceContext,
                        paddle::platform::float16>,
    ops::ExpandV2Kernel<paddle::platform::CUDADeviceContext, int>,
    ops::ExpandV2Kernel<paddle::platform::CUDADeviceContext, int64_t>,
    ops::ExpandV2Kernel<paddle::platform::CUDADeviceContext, bool>);
REGISTER_OP_CUDA_KERNEL(
    expand_v2_grad,
    ops::ExpandV2GradKernel<paddle::platform::CUDADeviceContext, float>,
    ops::ExpandV2GradKernel<paddle::platform::CUDADeviceContext, double>,
    ops::ExpandV2GradKernel<paddle::platform::CUDADeviceContext,
                            paddle::platform::float16>,
    ops::ExpandV2GradKernel<paddle::platform::CUDADeviceContext, int>,
    ops::ExpandV2GradKernel<paddle::platform::CUDADeviceContext, int64_t>);
#endif