graph_test.cc 14.0 KB
Newer Older
X
Xin Pan 已提交
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
X
Xin Pan 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/ir/graph.h"
16

X
Xin Pan 已提交
17
#include "gtest/gtest.h"
18
#include "paddle/fluid/framework/details/multi_devices_helper.h"
X
Xin Pan 已提交
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/program_desc.h"

namespace paddle {
namespace framework {

class NOP : public OperatorBase {
 public:
  NOP(const std::string &type, const VariableNameMap &inputs,
      const VariableNameMap &outputs, const AttributeMap &attrs)
      : OperatorBase(type, inputs, outputs, attrs) {}

 private:
  void RunImpl(const Scope &scope,
               const platform::Place &place) const override {}
};

class SumOpMaker : public OpProtoAndCheckerMaker {
 public:
  void Make() {
    AddInput("X", "").AsDuplicable();
X
Xin Pan 已提交
41
    AddOutput("Out", "").AsDuplicable();
X
Xin Pan 已提交
42 43 44 45 46 47
    AddComment("");
  }
};

class SumOpVarTypeInference : public VarTypeInference {
 public:
M
minqiyang 已提交
48
  void operator()(InferVarTypeContext *ctx) const override {
X
Xin Pan 已提交
49 50
    auto default_var_type = proto::VarType::SELECTED_ROWS;

51
    if (ctx->InputTypeAnyOf("X", proto::VarType::LOD_TENSOR)) {
X
Xin Pan 已提交
52 53 54
      default_var_type = proto::VarType::LOD_TENSOR;
    }

55
    ctx->SetOutputType("Out", default_var_type);
X
Xin Pan 已提交
56 57
  }
};
X
Xin Pan 已提交
58 59 60 61 62 63 64 65 66 67 68 69

class DummyOpMaker : public OpProtoAndCheckerMaker {
 public:
  void Make() {
    AddInput("X", "").AsDuplicable();
    AddOutput("Out", "").AsDuplicable();
    AddComment("");
  }
};

class DummyOpVarTypeInference : public VarTypeInference {
 public:
M
minqiyang 已提交
70
  void operator()(framework::InferVarTypeContext *ctx) const override {}
X
Xin Pan 已提交
71
};
X
Xin Pan 已提交
72 73 74 75 76
}  // namespace framework
}  // namespace paddle

REGISTER_OPERATOR(sum, paddle::framework::NOP, paddle::framework::SumOpMaker,
                  paddle::framework::SumOpVarTypeInference);
X
Xin Pan 已提交
77 78
REGISTER_OPERATOR(dummy, paddle::framework::NOP, paddle::framework::SumOpMaker,
                  paddle::framework::SumOpVarTypeInference);
X
Xin Pan 已提交
79 80 81 82 83 84 85 86 87 88 89 90
REGISTER_OPERATOR(sum_without_infer_var_type, paddle::framework::NOP,
                  paddle::framework::SumOpMaker);

namespace paddle {
namespace framework {

TEST(GraphTest, Basic) {
  ProgramDesc prog;
  auto *op = prog.MutableBlock(0)->AppendOp();
  op->SetType("sum");
  op->SetInput("X", {"test_a", "test_b", "test_c"});
  op->SetOutput("Out", {"test_out"});
X
Xin Pan 已提交
91
  op->SetAttr("op_role", 1);
X
Xin Pan 已提交
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107

  prog.MutableBlock(0)->Var("test_a")->SetType(proto::VarType::SELECTED_ROWS);
  prog.MutableBlock(0)->Var("test_b")->SetType(proto::VarType::SELECTED_ROWS);
  prog.MutableBlock(0)->Var("test_c")->SetType(proto::VarType::SELECTED_ROWS);
  prog.MutableBlock(0)->Var("test_out");

  op->InferVarType(prog.MutableBlock(0));

  ASSERT_EQ(proto::VarType::SELECTED_ROWS,
            prog.MutableBlock(0)->Var("test_out")->GetType());

  prog.MutableBlock(0)->Var("test_b")->SetType(proto::VarType::LOD_TENSOR);
  op->InferVarType(prog.MutableBlock(0));
  ASSERT_EQ(proto::VarType::LOD_TENSOR,
            prog.MutableBlock(0)->Var("test_out")->GetType());

X
Xin Pan 已提交
108
  std::unique_ptr<ir::Graph> g(new ir::Graph(prog));
X
Xin Pan 已提交
109
  std::vector<ir::Node *> nodes(g->Nodes().begin(), g->Nodes().end());
X
Xin Pan 已提交
110 111
  for (ir::Node *n : nodes) {
    if (n->Name() == "sum") {
N
nhzlx 已提交
112 113
      ASSERT_EQ(n->inputs.size(), 3UL);
      ASSERT_EQ(n->outputs.size(), 1UL);
X
Xin Pan 已提交
114 115
    } else if (n->Name() == "test_a" || n->Name() == "test_b" ||
               n->Name() == "test_c") {
N
nhzlx 已提交
116 117
      ASSERT_EQ(n->inputs.size(), 0UL);
      ASSERT_EQ(n->outputs.size(), 1UL);
X
Xin Pan 已提交
118
    } else if (n->Name() == "test_out") {
N
nhzlx 已提交
119 120
      ASSERT_EQ(n->inputs.size(), 1UL);
      ASSERT_EQ(n->outputs.size(), 0UL);
X
Xin Pan 已提交
121 122
    }
  }
123
  ASSERT_EQ(nodes.size(), 5UL);
X
Xin Pan 已提交
124
}
X
Xin Pan 已提交
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152

TEST(GraphTest, WriteAfterRead) {
  // void Test() {
  ProgramDesc prog;
  auto *op = prog.MutableBlock(0)->AppendOp();
  op->SetType("sum");
  op->SetInput("X", {"a"});
  op->SetOutput("Out", {"b"});
  op->SetAttr("op_role", 1);

  op = prog.MutableBlock(0)->AppendOp();
  op->SetType("dummy");
  op->SetInput("X", {"c"});
  op->SetOutput("Out", {"a"});
  op->SetAttr("op_role", 1);

  prog.MutableBlock(0)->Var("a")->SetType(proto::VarType::LOD_TENSOR);
  prog.MutableBlock(0)->Var("b")->SetType(proto::VarType::LOD_TENSOR);
  prog.MutableBlock(0)->Var("c")->SetType(proto::VarType::LOD_TENSOR);

  std::unique_ptr<ir::Graph> g(new ir::Graph(prog));
  ir::Node *control_dep1 = nullptr;
  ir::Node *control_dep2 = nullptr;
  for (ir::Node *n : g->Nodes()) {
    if (n->Name() == "sum") {
      ASSERT_EQ(n->outputs[0]->Name(), "b");
      ASSERT_TRUE(ir::IsControlDepVar(*n->outputs[1]));
      control_dep1 = n->outputs[1];
153
      ASSERT_EQ(n->outputs.size(), 2UL);
X
Xin Pan 已提交
154 155 156 157 158
    }
    if (n->Name() == "dummy") {
      ASSERT_EQ(n->inputs[0]->Name(), "c");
      ASSERT_TRUE(ir::IsControlDepVar(*n->inputs[1]));
      control_dep2 = n->inputs[1];
159
      ASSERT_EQ(n->inputs.size(), 2UL);
X
Xin Pan 已提交
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
    }
  }
  ASSERT_EQ(control_dep1, control_dep2);
}

TEST(GraphTest, WriteAfterWrite) {
  // void Test() {
  ProgramDesc prog;
  auto *op = prog.MutableBlock(0)->AppendOp();
  op->SetType("sum");
  op->SetInput("X", {"a"});
  op->SetOutput("Out", {"b"});
  op->SetAttr("op_role", 1);

  op = prog.MutableBlock(0)->AppendOp();
  op->SetType("dummy");
  op->SetInput("X", {"c"});
  op->SetOutput("Out", {"b"});
  op->SetAttr("op_role", 1);

  prog.MutableBlock(0)->Var("a")->SetType(proto::VarType::LOD_TENSOR);
  prog.MutableBlock(0)->Var("b")->SetType(proto::VarType::LOD_TENSOR);
  prog.MutableBlock(0)->Var("c")->SetType(proto::VarType::LOD_TENSOR);

  std::unique_ptr<ir::Graph> g(new ir::Graph(prog));
  ir::Node *control_dep1 = nullptr;
  ir::Node *control_dep2 = nullptr;
  for (ir::Node *n : g->Nodes()) {
    if (n->Name() == "sum") {
      ASSERT_EQ(n->outputs[0]->Name(), "b");
      ASSERT_TRUE(ir::IsControlDepVar(*n->outputs[1]));
191
      ASSERT_EQ(n->outputs.size(), 2UL);
X
Xin Pan 已提交
192 193 194 195 196 197
      control_dep1 = n->outputs[1];
    }
    if (n->Name() == "dummy") {
      ASSERT_EQ(n->inputs[0]->Name(), "c");
      ASSERT_TRUE(ir::IsControlDepVar(*n->inputs[1]));
      control_dep2 = n->inputs[1];
198
      ASSERT_EQ(n->inputs.size(), 2UL);
X
Xin Pan 已提交
199 200
    }
  }
M
minqiyang 已提交
201 202 203
  ASSERT_NE(control_dep1, nullptr);
  ASSERT_NE(control_dep2, nullptr);
  ASSERT_EQ(control_dep1, control_dep2);
X
Xin Pan 已提交
204
}
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250

TEST(GraphTest, TestException) {
  ProgramDesc prog;
  std::unique_ptr<ir::Graph> g(new ir::Graph(prog));

  bool not_met_exception = false;
  try {
    g->Erase("no_attr");
  } catch (const platform::EnforceNotMet &e) {
    not_met_exception = true;
  }
  ASSERT_TRUE(not_met_exception);

  not_met_exception = false;
  try {
    g->CreateVarNode(nullptr);
  } catch (const platform::EnforceNotMet &e) {
    not_met_exception = true;
  }
  ASSERT_TRUE(not_met_exception);

  not_met_exception = false;
  try {
    g->CreateOpNode(nullptr);
  } catch (const platform::EnforceNotMet &e) {
    not_met_exception = true;
  }
  ASSERT_TRUE(not_met_exception);

  not_met_exception = false;
  try {
    g->RemoveNode(nullptr);
  } catch (const platform::EnforceNotMet &e) {
    not_met_exception = true;
  }
  ASSERT_TRUE(not_met_exception);

  not_met_exception = false;
  try {
    g->AddNode(nullptr);
    g->AddNode(nullptr);
  } catch (const platform::EnforceNotMet &e) {
    not_met_exception = true;
  }
  ASSERT_TRUE(not_met_exception);
}
251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267

TEST(GraphTest, TestAttrCopy) {
  ProgramDesc prog;
  ir::Graph src_g(prog);
  ir::Graph dst_g(prog);
  const std::string kIntValue = "int_value";
  const std::string kFloatValue = "float_value";
  const int INT_VALUE = 3;
  src_g.Set<int>(kIntValue, new int(INT_VALUE));
  details::CopyGraphAttrIfExists<int>(src_g, &dst_g, kIntValue);
  details::CopyGraphAttrIfExists<float>(src_g, &dst_g, kFloatValue);

  ASSERT_TRUE(dst_g.Has(kIntValue));
  ASSERT_EQ(dst_g.Get<int>(kIntValue), INT_VALUE);
  ASSERT_FALSE(dst_g.Has(kFloatValue));
}

268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443
TEST(GraphTest, TestInterfaceConvertAllBlocks) {
  // Set FLAGS_convert_all_blocks to true to make sure this test works.
  bool flag_temp = FLAGS_convert_all_blocks;
  FLAGS_convert_all_blocks = true;

  ProgramDesc prog;
  prog.MutableBlock(0)->Var("init_var")->SetType(proto::VarType::SELECTED_ROWS);
  ir::Graph g(prog);
  ASSERT_TRUE(g.IsMainGraph());

  const std::string kIntValue = "int_value";
  const int INT_VALUE = 3;
  g.Set<int>(kIntValue, new int(INT_VALUE));
  ASSERT_TRUE(g.Has(kIntValue));
  ASSERT_EQ(g.GetOrInit<int>(kIntValue), INT_VALUE);
  ASSERT_EQ(g.Get<int>(kIntValue), INT_VALUE);
  g.Erase(kIntValue);
  ASSERT_TRUE(!g.Has(kIntValue));
  g.SetNotOwned<int>(kIntValue, new int(INT_VALUE));
  ASSERT_TRUE(g.Has(kIntValue));
  g.Erase(kIntValue);

  g.ReleaseNodes();
  ASSERT_EQ(g.Nodes().size(), 0UL);
  g.CreateVarNode(new VarDesc("temp_var_desc_name"));
  g.CreateOpNode(prog.MutableBlock(0)->AppendOp());
  g.CreateControlDepVar();
  g.CreateEmptyNode("temp_empty_node_name", ir::Node::Type::kVariable);
  ASSERT_EQ(g.Nodes().size(), 4UL);
  g.RemoveNode(g.RetrieveNode(1));
  ASSERT_EQ(g.Nodes().size(), 3UL);

  // Recover FLAGS_convert_all_blocks.
  FLAGS_convert_all_blocks = flag_temp;
}

TEST(GraphTest, TestMultiBlock) {
  // Set FLAGS_convert_all_blocks to true to make sure this test works.
  bool flag_temp = FLAGS_convert_all_blocks;
  FLAGS_convert_all_blocks = true;

  // Step1: Build a program with 3 blocks.
  ProgramDesc prog;
  ASSERT_EQ(prog.Size(), 1UL);
  prog.AppendBlock(prog.Block(0));
  prog.AppendBlock(prog.Block(0));
  ASSERT_EQ(prog.Size(), 3UL);

  // Set contents in block_0.
  auto *op = prog.MutableBlock(0)->AppendOp();
  op->SetType("sum");
  op->SetInput("X", {"test_a", "test_b", "test_c"});
  op->SetOutput("Out", {"test_out"});
  op->SetAttr("op_role", 1);

  prog.MutableBlock(0)->Var("test_a")->SetType(proto::VarType::SELECTED_ROWS);
  prog.MutableBlock(0)->Var("test_b")->SetType(proto::VarType::SELECTED_ROWS);
  prog.MutableBlock(0)->Var("test_c")->SetType(proto::VarType::SELECTED_ROWS);
  prog.MutableBlock(0)->Var("test_out");
  op->InferVarType(prog.MutableBlock(0));
  ASSERT_EQ(proto::VarType::SELECTED_ROWS,
            prog.MutableBlock(0)->Var("test_out")->GetType());

  prog.MutableBlock(0)->Var("test_b")->SetType(proto::VarType::LOD_TENSOR);
  op->InferVarType(prog.MutableBlock(0));
  ASSERT_EQ(proto::VarType::LOD_TENSOR,
            prog.MutableBlock(0)->Var("test_out")->GetType());

  // Set contents in block_1.
  op = prog.MutableBlock(1)->AppendOp();
  op->SetType("sum");
  op->SetInput("X", {"a"});
  op->SetOutput("Out", {"b"});
  op->SetAttr("op_role", 1);

  op = prog.MutableBlock(1)->AppendOp();
  op->SetType("dummy");
  op->SetInput("X", {"c"});
  op->SetOutput("Out", {"a"});
  op->SetAttr("op_role", 1);

  prog.MutableBlock(1)->Var("a")->SetType(proto::VarType::LOD_TENSOR);
  prog.MutableBlock(1)->Var("b")->SetType(proto::VarType::LOD_TENSOR);
  prog.MutableBlock(1)->Var("c")->SetType(proto::VarType::LOD_TENSOR);

  // Set contents in block_2.
  op = prog.MutableBlock(2)->AppendOp();
  op->SetType("sum");
  op->SetInput("X", {"a"});
  op->SetOutput("Out", {"b"});
  op->SetAttr("op_role", 1);

  op = prog.MutableBlock(2)->AppendOp();
  op->SetType("dummy");
  op->SetInput("X", {"c"});
  op->SetOutput("Out", {"b"});
  op->SetAttr("op_role", 1);

  prog.MutableBlock(2)->Var("a")->SetType(proto::VarType::LOD_TENSOR);
  prog.MutableBlock(2)->Var("b")->SetType(proto::VarType::LOD_TENSOR);
  prog.MutableBlock(2)->Var("c")->SetType(proto::VarType::LOD_TENSOR);

  // Step2: Convert program into graph, 3 blocks corresponding 3 sub_graphs.
  std::unique_ptr<ir::Graph> g(new ir::Graph(prog));
  ASSERT_EQ(g->IsMainGraph(), true);
  ASSERT_EQ(g->SubGraphsSize(), 3UL);

  // Check contents in sub_graph_0.
  const ir::Graph *g0 = g->GetSubGraph(0);
  std::vector<ir::Node *> nodes(g0->Nodes().begin(), g0->Nodes().end());
  for (ir::Node *n : nodes) {
    if (n->Name() == "sum") {
      ASSERT_EQ(n->inputs.size(), 3UL);
      ASSERT_EQ(n->outputs.size(), 1UL);
    } else if (n->Name() == "test_a" || n->Name() == "test_b" ||
               n->Name() == "test_c") {
      ASSERT_EQ(n->inputs.size(), 0UL);
      ASSERT_EQ(n->outputs.size(), 1UL);
    } else if (n->Name() == "test_out") {
      ASSERT_EQ(n->inputs.size(), 1UL);
      ASSERT_EQ(n->outputs.size(), 0UL);
    }
  }
  ASSERT_EQ(nodes.size(), 5UL);

  // Check contents in sub_graph_1.
  const ir::Graph *g1 = g->GetSubGraph(1);
  ir::Node *control_dep1 = nullptr;
  ir::Node *control_dep2 = nullptr;
  for (ir::Node *n : g1->Nodes()) {
    if (n->Name() == "sum") {
      ASSERT_EQ(n->outputs[0]->Name(), "b");
      ASSERT_TRUE(ir::IsControlDepVar(*n->outputs[1]));
      control_dep1 = n->outputs[1];
      ASSERT_EQ(n->outputs.size(), 2UL);
    }
    if (n->Name() == "dummy") {
      ASSERT_EQ(n->inputs[0]->Name(), "c");
      ASSERT_TRUE(ir::IsControlDepVar(*n->inputs[1]));
      control_dep2 = n->inputs[1];
      ASSERT_EQ(n->inputs.size(), 2UL);
    }
  }
  ASSERT_EQ(control_dep1, control_dep2);

  // Check contents in sub_graph_2.
  const ir::Graph *g2 = g->GetSubGraph(2);
  control_dep1 = nullptr;
  control_dep2 = nullptr;
  for (ir::Node *n : g2->Nodes()) {
    if (n->Name() == "sum") {
      ASSERT_EQ(n->outputs[0]->Name(), "b");
      ASSERT_TRUE(ir::IsControlDepVar(*n->outputs[1]));
      ASSERT_EQ(n->outputs.size(), 2UL);
      control_dep1 = n->outputs[1];
    }
    if (n->Name() == "dummy") {
      ASSERT_EQ(n->inputs[0]->Name(), "c");
      ASSERT_TRUE(ir::IsControlDepVar(*n->inputs[1]));
      control_dep2 = n->inputs[1];
      ASSERT_EQ(n->inputs.size(), 2UL);
    }
  }
  ASSERT_NE(control_dep1, nullptr);
  ASSERT_NE(control_dep2, nullptr);
  ASSERT_EQ(control_dep1, control_dep2);

  // Step3: Clone graph.
  std::shared_ptr<ir::Graph> clone_g = g->Clone();
  ASSERT_EQ(clone_g->IsMainGraph(), true);
  ASSERT_EQ(clone_g->SubGraphsSize(), 3UL);

  // Recover FLAGS_convert_all_blocks.
  FLAGS_convert_all_blocks = flag_temp;
}

X
Xin Pan 已提交
444 445
}  // namespace framework
}  // namespace paddle