eager_method.cc 18.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
// disable numpy compile error
#include <Python.h>

#include <string>
#include <vector>

#include "pybind11/numpy.h"
#include "pybind11/pybind11.h"

20
#include "paddle/fluid/eager/accumulation/accumulation_node.h"
21 22
#include "paddle/fluid/eager/api/all.h"
#include "paddle/fluid/eager/autograd_meta.h"
23
#include "paddle/fluid/eager/utils.h"
24 25 26 27 28 29
#include "paddle/fluid/memory/allocation/allocator.h"
#include "paddle/fluid/memory/memcpy.h"
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/pybind/eager.h"
#include "paddle/fluid/pybind/eager_utils.h"
#include "paddle/fluid/pybind/exception.h"
30
#include "paddle/pten/api/include/api.h"
31 32 33 34 35 36
#include "paddle/pten/common/data_type.h"
#include "paddle/pten/core/convert_utils.h"
#include "paddle/pten/core/dense_tensor.h"
namespace paddle {
namespace pybind {

37 38 39 40
extern void InitEagerTensorWithNumpyValue(EagerTensorObject* self,
                                          const pybind11::object& array,
                                          bool zero_copy);

41
extern PyTypeObject* p_eager_tensor_type;
42 43 44

static PyObject* eager_tensor_method_numpy(EagerTensorObject* self,
                                           PyObject* args, PyObject* kwargs) {
J
Jiabin Yang 已提交
45
  EAGER_SYNC_TRY
46 47 48 49 50 51
  PADDLE_ENFORCE_EQ(
      self->eager_tensor.initialized(), true,
      platform::errors::InvalidArgument(
          "Tensor data of %s is Empty that indicates we have null tensor for "
          "now, please check if it has no data and initialize it first.",
          self->eager_tensor.name()));
J
Jiabin Yang 已提交
52 53 54
  auto tensor_dims = self->eager_tensor.shape();
  auto numpy_dtype = TensorDtype2NumpyDtype(self->eager_tensor.type());
  auto sizeof_dtype = pten::DataTypeSize(self->eager_tensor.type());
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
  Py_intptr_t py_dims[paddle::framework::DDim::kMaxRank];
  Py_intptr_t py_strides[paddle::framework::DDim::kMaxRank];
  size_t numel = 1;
  for (int i = tensor_dims.size() - 1; i >= 0; --i) {
    py_dims[i] = static_cast<size_t>(tensor_dims[i]);
    py_strides[i] = sizeof_dtype * numel;
    numel *= py_dims[i];
  }
  auto& api = pybind11::detail::npy_api::get();
  PyObject* array = api.PyArray_NewFromDescr_(
      api.PyArray_Type_, api.PyArray_DescrFromType_(numpy_dtype),
      tensor_dims.size(), py_dims, py_strides, nullptr,
      pybind11::detail::npy_api::NPY_ARRAY_ALIGNED_ |
          pybind11::detail::npy_api::NPY_ARRAY_WRITEABLE_,
      nullptr);

J
Jiabin Yang 已提交
71
  if (self->eager_tensor.is_cpu()) {
72
    auto dense_tensor =
J
Jiabin Yang 已提交
73
        std::dynamic_pointer_cast<pten::DenseTensor>(self->eager_tensor.impl());
74 75 76 77 78 79
    platform::CPUPlace place;
    // deep copy
    paddle::memory::Copy(place, reinterpret_cast<void*>(
                                    pybind11::detail::array_proxy(array)->data),
                         place, dense_tensor->data(), sizeof_dtype * numel);
#if defined(PADDLE_WITH_CUDA)
J
Jiabin Yang 已提交
80
  } else if (self->eager_tensor.is_cuda()) {
81
    auto dense_tensor =
J
Jiabin Yang 已提交
82
        std::dynamic_pointer_cast<pten::DenseTensor>(self->eager_tensor.impl());
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99

    paddle::platform::GpuMemcpySync(
        pybind11::detail::array_proxy(array)->data, dense_tensor->data(),
        pten::DataTypeSize(dense_tensor->dtype()) * dense_tensor->numel(),
        cudaMemcpyDeviceToHost);
#endif
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Tensor.numpy() only support cpu tensor."));
    Py_INCREF(Py_None);
    return Py_None;
  }

  return array;
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

100 101 102
static PyObject* eager_tensor_method__is_initialized(EagerTensorObject* self,
                                                     PyObject* args,
                                                     PyObject* kwargs) {
J
Jiabin Yang 已提交
103 104
  EAGER_SYNC_TRY
  return ToPyObject(self->eager_tensor.initialized());
105 106 107
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
static PyObject* eager_tensor_method__copy_to(EagerTensorObject* self,
                                              PyObject* args,
                                              PyObject* kwargs) {
  EAGER_SYNC_TRY
  bool blocking = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 0), 0);
  auto place = CastPyArg2Place(PyTuple_GET_ITEM(args, 1), 1);
  auto cp_tensor =
      self->eager_tensor.copy_to(pten::TransToPtenBackend(place), blocking);
  egr::EagerUtils::autograd_meta(&cp_tensor)->SetStopGradient(true);
  egr::EagerUtils::autograd_meta(&cp_tensor)
      ->SetPersistable(
          egr::EagerUtils::autograd_meta(&(self->eager_tensor))->Persistable());
  return ToPyObject(cp_tensor);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
static PyObject* eager_tensor_method_reconstruct_from_(EagerTensorObject* self,
                                                       PyObject* args,
                                                       PyObject* kwargs) {
  EAGER_SYNC_TRY
  egr::EagerTensor src_tensor =
      CastPyArg2EagerTensor(PyTuple_GET_ITEM(args, 0), 0);
  bool blocking = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 1), 1);
  std::string orig_name = self->eager_tensor.name();
  VLOG(6) << "Start Reconstructing Tensor from" << src_tensor.name() << " to "
          << orig_name;
  self->eager_tensor.copy_(src_tensor, blocking);
  // Steal Tensor from src tensor
  self->eager_tensor.set_tensor(src_tensor.Tensor());

  // Recover source name
  self->eager_tensor.set_name(orig_name);

  VLOG(6) << "Finished Reconstructing Tensor from" << src_tensor.name()
          << " to " << self->eager_tensor.name();
  Py_INCREF(Py_None);
  return Py_None;
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

148 149 150 151 152 153
static PyObject* eager_tensor_method_copy_(EagerTensorObject* self,
                                           PyObject* args, PyObject* kwargs) {
  EAGER_SYNC_TRY
  egr::EagerTensor src_tensor =
      CastPyArg2EagerTensor(PyTuple_GET_ITEM(args, 0), 0);
  bool blocking = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 1), 1);
154 155
  VLOG(6) << "Start Copy Tensor " << src_tensor.name() << " to "
          << self->eager_tensor.name();
156 157 158 159 160 161 162 163 164
  if (!self->eager_tensor.defined()) {
    egr::EagerUtils::autograd_meta(&(self->eager_tensor))
        ->SetStopGradient(
            egr::EagerUtils::autograd_meta(&(src_tensor))->StopGradient());
    egr::EagerUtils::autograd_meta(&(self->eager_tensor))
        ->SetPersistable(
            egr::EagerUtils::autograd_meta(&(src_tensor))->Persistable());
  }

165
  self->eager_tensor.copy_(src_tensor, blocking);
166

167 168 169 170 171 172 173 174 175 176
  VLOG(6) << "Finish Copy Tensor " << src_tensor.name() << " to "
          << self->eager_tensor.name();
  Py_INCREF(Py_None);
  return Py_None;
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

static PyObject* eager_tensor_retain_grads(EagerTensorObject* self,
                                           PyObject* args, PyObject* kwargs) {
  EAGER_TRY
177 178 179 180 181 182 183 184
  if (egr::Controller::Instance().HasGrad()) {
    auto meta = egr::EagerUtils::autograd_meta(&(self->eager_tensor));
    if (!meta->GetMutableGradNode()) {
      VLOG(6) << "Make grad node of tensor: " << self->eager_tensor.name()
              << "become accumulation node";
      meta->SetGradNode(std::make_shared<egr::GradNodeAccumulation>());
    }
    egr::egr_utils_api::RetainGradForTensor(self->eager_tensor);
185
  }
186 187 188 189 190
  Py_INCREF(Py_None);
  return Py_None;
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

191 192 193 194 195 196
static PyObject* eager_tensor__clear_gradient(EagerTensorObject* self,
                                              PyObject* args,
                                              PyObject* kwargs) {
  EAGER_SYNC_TRY
  VLOG(4) << "ClearGradient " << self->eager_tensor.name();

197
  egr::EagerTensor* grad;
198 199 200 201 202 203 204 205 206 207 208 209 210 211
  if (egr::egr_utils_api::IsLeafTensor(self->eager_tensor)) {
    // Add RetainGrad as PostHook to AccumulationNode
    std::shared_ptr<egr::GradNodeBase> grad_node =
        egr::EagerUtils::grad_node(self->eager_tensor);
    PADDLE_ENFORCE(
        grad_node.get() != nullptr,
        paddle::platform::errors::Fatal("Detected NULL grad_node"
                                        "Leaf tensor should have had grad_node "
                                        "with type: GradNodeAccumulation"));
    auto accumulation_grad_node =
        std::dynamic_pointer_cast<egr::GradNodeAccumulation>(grad_node);
    grad = accumulation_grad_node->Grad();
  } else {
    auto meta = egr::EagerUtils::unsafe_autograd_meta(self->eager_tensor);
212
    grad = meta->MutableGrad();
213 214
  }

215
  if (grad->initialized()) {
216 217 218
    VLOG(4) << "Gradient of " << self->eager_tensor.name()
            << " is initialized, will be released.";
    auto dense_tensor =
219
        std::dynamic_pointer_cast<pten::DenseTensor>(grad->impl());
220
    dense_tensor->MoveMemoryHolder();
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
  }
  Py_INCREF(Py_None);
  return Py_None;
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

static PyObject* eager_tensor__zero_grads(EagerTensorObject* self,
                                          PyObject* args, PyObject* kwargs) {
  EAGER_TRY
  VLOG(4) << "ZeroGrads " << self->eager_tensor.name();

  if (egr::egr_utils_api::IsLeafTensor(self->eager_tensor)) {
    // Add RetainGrad as PostHook to AccumulationNode
    std::shared_ptr<egr::GradNodeBase> grad_node =
        egr::EagerUtils::grad_node(self->eager_tensor);
    PADDLE_ENFORCE(
        grad_node.get() != nullptr,
        paddle::platform::errors::Fatal("Detected NULL grad_node"
                                        "Leaf tensor should have had grad_node "
                                        "with type: GradNodeAccumulation"));
    auto accumulation_grad_node =
        std::dynamic_pointer_cast<egr::GradNodeAccumulation>(grad_node);
243 244 245 246 247 248
    if (accumulation_grad_node->Grad()->initialized()) {
      accumulation_grad_node->Grad()->set_tensor(
          std::make_shared<paddle::experimental::Tensor>(
              paddle::experimental::zeros_like(
                  *(accumulation_grad_node->Grad()->Tensor().get()))));
    }
249 250
  } else {
    auto meta = egr::EagerUtils::unsafe_autograd_meta(self->eager_tensor);
251 252 253 254 255 256
    if (meta->MutableGrad()->initialized()) {
      meta->MutableGrad()->set_tensor(
          std::make_shared<paddle::experimental::Tensor>(
              paddle::experimental::zeros_like(
                  *(meta->MutableGrad()->Tensor().get()))));
    }
257 258 259 260 261 262 263
  }

  Py_INCREF(Py_None);
  return Py_None;
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

264 265 266 267
static PyObject* eager_tensor__share_buffer_to(EagerTensorObject* self,
                                               PyObject* args,
                                               PyObject* kwargs) {
  EAGER_SYNC_TRY
268
  egr::EagerTensor* dst_ptr =
269 270 271 272 273 274 275
      &(reinterpret_cast<EagerTensorObject*>(PyTuple_GET_ITEM(args, 0))
            ->eager_tensor);
  PADDLE_ENFORCE_EQ(self->eager_tensor.initialized(), true,
                    platform::errors::InvalidArgument(
                        "Tensor %s has not been initialized! please initialize "
                        "src tensor before share_buffer_with to other.",
                        self->eager_tensor.name()));
276 277 278 279 280 281
  auto* src_tensor =
      static_cast<paddle::framework::Tensor*>(self->eager_tensor.impl().get());
  auto dst_tensor =
      static_cast<paddle::framework::Tensor*>(dst_ptr->impl().get());
  dst_tensor->ShareDataWith(*src_tensor);
  dst_tensor->ShareDataTypeWith(*src_tensor);
282 283 284 285 286 287 288 289 290
  Py_INCREF(Py_None);
  return Py_None;
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

static PyObject* eager_tensor__is_shared_buffer_with(EagerTensorObject* self,
                                                     PyObject* args,
                                                     PyObject* kwargs) {
  EAGER_SYNC_TRY
291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
  egr::EagerTensor* dst_ptr =
      &(reinterpret_cast<EagerTensorObject*>(PyTuple_GET_ITEM(args, 0))
            ->eager_tensor);
  PADDLE_ENFORCE_EQ(self->eager_tensor.initialized(), true,
                    platform::errors::InvalidArgument(
                        "Tensor %s has not been initialized! please initialize "
                        "src tensor before share_buffer_with to other.",
                        self->eager_tensor.name()));
  bool res = false;
  if (!self->eager_tensor.defined() || !dst_ptr->defined()) {
    return ToPyObject(res);
  }
  auto* self_ptr =
      static_cast<paddle::framework::Tensor*>(self->eager_tensor.impl().get());
  auto dst_tensor =
      static_cast<paddle::framework::Tensor*>(dst_ptr->impl().get());
  res = dst_tensor->IsSharedBufferWith(*self_ptr);
  return ToPyObject(res);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

static PyObject* eager_tensor__share_underline_tensor_to(
    EagerTensorObject* self, PyObject* args, PyObject* kwargs) {
  EAGER_SYNC_TRY
  egr::EagerTensor* src_ptr =
      &(reinterpret_cast<EagerTensorObject*>(PyTuple_GET_ITEM(args, 0))
            ->eager_tensor);
  PADDLE_ENFORCE_EQ(self->eager_tensor.initialized(), true,
                    platform::errors::InvalidArgument(
                        "Tensor %s has not been initialized! please initialize "
                        "src tensor before share_buffer_with to other.",
                        self->eager_tensor.name()));
  src_ptr->set_impl(self->eager_tensor.impl());
  Py_INCREF(Py_None);
  return Py_None;
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

static PyObject* eager_tensor__is_shared_underline_tensor_with(
    EagerTensorObject* self, PyObject* args, PyObject* kwargs) {
  EAGER_SYNC_TRY
332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347
  egr::EagerTensor src_tensor =
      CastPyArg2EagerTensor(PyTuple_GET_ITEM(args, 0), 0);
  PADDLE_ENFORCE_EQ(src_tensor.initialized(), true,
                    platform::errors::InvalidArgument(
                        "Tensor %s has not been initialized! please initialize "
                        "src tensor before share_buffer_with to other.",
                        src_tensor.name()));
  bool res = false;
  if (!self->eager_tensor.defined() || !src_tensor.defined()) {
    return ToPyObject(res);
  }
  res = (self->eager_tensor.impl().get() == src_tensor.impl().get());
  return ToPyObject(res);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
static PyObject* eager_tensor_method_detach(EagerTensorObject* self,
                                            PyObject* args, PyObject* kwargs) {
  EAGER_SYNC_TRY
  PADDLE_ENFORCE_EQ(
      self->eager_tensor.initialized(), true,
      platform::errors::InvalidArgument("Tensor %s has not been initialized!",
                                        self->eager_tensor.name()));

  PyObject* obj = p_eager_tensor_type->tp_alloc(p_eager_tensor_type, 0);
  if (obj) {
    auto v = reinterpret_cast<EagerTensorObject*>(obj);
    new (&(v->eager_tensor)) egr::EagerTensor();
    v->eager_tensor.set_impl(self->eager_tensor.impl());
    v->eager_tensor.set_name(egr::Controller::Instance().GenerateUniqueName());
    auto autograd_meta_src =
        egr::EagerUtils::autograd_meta(&(self->eager_tensor));
    auto autograd_meta = egr::EagerUtils::autograd_meta(&(v->eager_tensor));
    autograd_meta->SetPersistable(autograd_meta_src->Persistable());
  } else {
    PADDLE_THROW(platform::errors::Fatal(
        "tp_alloc return null, can not new a PyObject."));
  }

  return obj;
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

375 376 377 378 379 380 381 382 383 384 385 386 387 388 389
static PyObject* eager_tensor_method_get_underline_tensor(
    EagerTensorObject* self, PyObject* args, PyObject* kwargs) {
  EAGER_SYNC_TRY
  if (self->eager_tensor.is_dense_tensor()) {
    auto* tensor = static_cast<paddle::framework::LoDTensor*>(
        self->eager_tensor.impl().get());
    VLOG(6) << "tensor: " << tensor->IsInitialized();
    return ToPyObject(tensor);
  } else {
    Py_IncRef(Py_None);
    return Py_None;
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

390 391 392 393 394 395 396 397 398 399 400 401 402 403
// NOTE(wuweilong): Set value and not change self's original place
static PyObject* eager_tensor_method_set_value(EagerTensorObject* self,
                                               PyObject* args,
                                               PyObject* kwargs) {
  EAGER_TRY
  VLOG(4) << "Value " << self->eager_tensor.name();
  pybind11::object numpy_value =
      pybind11::object(pybind11::handle(PyTuple_GET_ITEM(args, 0)), true);
  InitEagerTensorWithNumpyValue(self, numpy_value, false);
  Py_INCREF(Py_None);
  return Py_None;
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

404 405 406 407
PyMethodDef variable_methods[] = {
    {"numpy", (PyCFunction)(void (*)(void))eager_tensor_method_numpy,
     METH_VARARGS | METH_KEYWORDS, NULL},
    {"_is_initialized",
408 409 410 411 412
     (PyCFunction)(void (*)(void))eager_tensor_method__is_initialized,
     METH_VARARGS | METH_KEYWORDS, NULL},
    {"_copy_to", (PyCFunction)(void (*)(void))eager_tensor_method__copy_to,
     METH_VARARGS | METH_KEYWORDS, NULL},
    {"copy_", (PyCFunction)(void (*)(void))eager_tensor_method_copy_,
413
     METH_VARARGS | METH_KEYWORDS, NULL},
414 415 416
    {"reconstruct_from_",
     (PyCFunction)(void (*)(void))eager_tensor_method_reconstruct_from_,
     METH_VARARGS | METH_KEYWORDS, NULL},
417 418
    {"retain_grads", (PyCFunction)(void (*)(void))eager_tensor_retain_grads,
     METH_VARARGS | METH_KEYWORDS, NULL},
419 420 421 422 423
    {"_clear_gradient",
     (PyCFunction)(void (*)(void))eager_tensor__clear_gradient,
     METH_VARARGS | METH_KEYWORDS, NULL},
    {"_zero_grads", (PyCFunction)(void (*)(void))eager_tensor__zero_grads,
     METH_VARARGS | METH_KEYWORDS, NULL},
424
    {"_share_buffer_to",
425 426
     (PyCFunction)(void (*)(void))eager_tensor__share_buffer_to,
     METH_VARARGS | METH_KEYWORDS, NULL},
427
    {"_is_shared_buffer_with",
428 429
     (PyCFunction)(void (*)(void))eager_tensor__is_shared_buffer_with,
     METH_VARARGS | METH_KEYWORDS, NULL},
430 431 432 433 434 435
    {"_share_underline_tensor_to",
     (PyCFunction)(void (*)(void))eager_tensor__share_underline_tensor_to,
     METH_VARARGS | METH_KEYWORDS, NULL},
    {"_is_shared_underline_tensor_with",
     (PyCFunction)(void (*)(void))eager_tensor__is_shared_underline_tensor_with,
     METH_VARARGS | METH_KEYWORDS, NULL},
436 437
    {"detach", (PyCFunction)(void (*)(void))eager_tensor_method_detach,
     METH_VARARGS | METH_KEYWORDS, NULL},
438 439 440
    {"get_tensor",
     (PyCFunction)(void (*)(void))eager_tensor_method_get_underline_tensor,
     METH_VARARGS | METH_KEYWORDS, NULL},
441 442
    {"_set_value", (PyCFunction)(void (*)(void))eager_tensor_method_set_value,
     METH_VARARGS | METH_KEYWORDS, NULL},
443 444 445 446
    {NULL, NULL, 0, NULL}};

}  // namespace pybind
}  // namespace paddle