test_data_feeder.py 5.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest

import py_paddle.swig_paddle as api
import numpy as np

from paddle.v2 import data_type
from paddle.v2.data_feeder import DataFeeder


class DataFeederTest(unittest.TestCase):
    def dense_reader(self, size):
        data = np.random.random(size)
        return data

    def sparse_binary_reader(self, high, size_limit, non_empty=False):
        num = np.random.randint(size_limit)  # num could be 0
        while non_empty and num == 0:
            num = np.random.randint(size_limit)
        return np.random.randint(high, size=num).tolist()

    def test_dense_vector(self):
        def compare(input):
            feeder = DataFeeder([('image', data_type.dense_vector(784))],
                                {'image': 0})
            arg = feeder([input])
            output = arg.getSlotValue(0).copyToNumpyMat()
            input = np.array(input, dtype='float32')
            self.assertAlmostEqual(input.all(), output.all())

        # test numpy array
        batch_size = 32
        dim = 784
        data = []
        for i in xrange(batch_size):
            data.append(self.dense_reader(784))
        compare(data)

        # test list
        data = []
        for i in xrange(batch_size):
            data.append(self.dense_reader(784).tolist())
        compare(data)

    def test_sparse_binary(self):
        dim = 10000
        batch_size = 32
        data = []
        for i in xrange(batch_size):
            data.append([self.sparse_binary_reader(dim, 50)])
        feeder = DataFeeder([('input', data_type.sparse_binary_vector(dim))],
                            {'input': 0})
        arg = feeder(data)
        output = arg.getSlotValue(0)
        assert isinstance(output, api.Matrix)
        for i in xrange(batch_size):
            self.assertEqual(output.getSparseRowCols(i), data[i][0])

    def test_sparse(self):
        dim = 10000
        batch_size = 32
        v = []
        w = []
        data = []
        for dat in xrange(batch_size):
            a = self.sparse_binary_reader(dim, 40, non_empty=True)
            b = self.dense_reader(len(a)).tolist()
            v.append(a)
            w.append(b[0])
            data.append([zip(a, b)])

        feeder = DataFeeder([('input', data_type.sparse_vector(dim))],
                            {'input': 0})
        arg = feeder(data)
        output = arg.getSlotValue(0)
        assert isinstance(output, api.Matrix)
        for i in xrange(batch_size):
            self.assertEqual(output.getSparseRowCols(i), v[i])

    def test_integer(self):
        dim = 100
        batch_size = 32
        index = []
        for i in xrange(batch_size):
            index.append([np.random.randint(dim)])
        feeder = DataFeeder([('input', data_type.integer_value(dim))],
                            {'input': 0})
        arg = feeder(index)
        output = arg.getSlotIds(0).copyToNumpyArray()
        index = np.array(index, dtype='int')
        self.assertEqual(output.all(), index.flatten().all())

    def test_multiple_slots(self):
        batch_size = 2
        data = []
        for i in xrange(batch_size):
            each_sample = []
            each_sample.append(np.random.randint(10))  # size of feature 2: 10
            each_sample.append(
                self.sparse_binary_reader(
                    20000, 40, non_empty=True))  # size of feature 1: 20000
            each_sample.append(self.dense_reader(100))  # size of feature 0: 100
            data.append(each_sample)

        # test multiple features
        data_types = [('fea0', data_type.dense_vector(100)),
                      ('fea1', data_type.sparse_binary_vector(20000)),
                      ('fea2', data_type.integer_value(10))]
        feeder = DataFeeder(data_types, {'fea0': 2, 'fea1': 1, 'fea2': 0})
        arg = feeder(data)
        output_dense = arg.getSlotValue(0).copyToNumpyMat()
        output_sparse = arg.getSlotValue(1)
        output_index = arg.getSlotIds(2).copyToNumpyArray()
        for i in xrange(batch_size):
            self.assertEqual(output_dense[i].all(), data[i][2].all())
            self.assertEqual(output_sparse.getSparseRowCols(i), data[i][1])
            self.assertEqual(output_index[i], data[i][0])

        # reader returns 3 featreus, but only use 2 features
        data_types = [('fea0', data_type.dense_vector(100)),
                      ('fea2', data_type.integer_value(10))]
        feeder = DataFeeder(data_types, {'fea0': 2, 'fea2': 0})
        arg = feeder(data)
        output_dense = arg.getSlotValue(0).copyToNumpyMat()
        output_index = arg.getSlotIds(1).copyToNumpyArray()
        for i in xrange(batch_size):
            self.assertEqual(output_dense[i].all(), data[i][2].all())
            self.assertEqual(output_index[i], data[i][0])


if __name__ == '__main__':
    api.initPaddle("--use_gpu=0")
    unittest.main()

if __name__ == '__main__':
    api.initPaddle("--use_gpu=0")
    unittest.main()