enforce.h 50.2 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

17 18 19 20
#ifdef __GNUC__
#include <cxxabi.h>  // for __cxa_demangle
#endif               // __GNUC__

21
#if !defined(_WIN32)
22
#include <dlfcn.h>   // dladdr
23
#include <unistd.h>  // sleep, usleep
24
#else                // _WIN32
25 26 27
#ifndef NOMINMAX
#define NOMINMAX  // msvc max/min macro conflict with std::min/max
#endif
28
#include <windows.h>  // GetModuleFileName, Sleep
29 30
#endif

31 32 33 34 35 36
#ifdef PADDLE_WITH_CUDA
#include <cublas_v2.h>
#include <cudnn.h>
#include <curand.h>
#include <thrust/system/cuda/error.h>
#include <thrust/system_error.h>
37
#include "paddle/fluid/platform/cuda_error.pb.h"
38 39
#endif  // PADDLE_WITH_CUDA

40 41 42 43 44
#ifdef PADDLE_WITH_HIP
#include <hiprand.h>
#include <miopen/miopen.h>
#include <rocblas.h>
#include <thrust/system/hip/error.h>
45
#include <thrust/system_error.h>  // NOLINT
46 47
#endif

48 49
#ifdef PADDLE_WITH_ASCEND_CL
#include "acl/acl.h"
50
#include "hccl/hccl_types.h"
51 52
#endif  // PADDLE_WITH_ASCEND_CL

53
#include <fstream>
Y
Yu Yang 已提交
54
#include <iomanip>
L
liaogang 已提交
55
#include <memory>
56 57 58
#include <sstream>
#include <stdexcept>
#include <string>
S
sneaxiy 已提交
59 60
#include <type_traits>
#include <utility>
61

chen.zhiyu's avatar
chen.zhiyu 已提交
62 63 64 65
#if !defined(_WIN32) && !defined(PADDLE_WITH_MUSL)
#include <execinfo.h>
#endif

66
#define GLOG_NO_ABBREVIATED_SEVERITIES  // msvc conflict logging with windows.h
67
#include "gflags/gflags.h"
68
#include "glog/logging.h"
69
#include "paddle/fluid/platform/errors.h"
Y
Yi Wang 已提交
70
#include "paddle/fluid/platform/macros.h"
D
dzhwinter 已提交
71
#include "paddle/fluid/platform/port.h"
72
#include "paddle/fluid/platform/variant.h"
73 74
#include "paddle/fluid/string/printf.h"
#include "paddle/fluid/string/to_string.h"
75

76
#ifdef PADDLE_WITH_CUDA
Y
Yi Wang 已提交
77 78 79
#include "paddle/fluid/platform/dynload/cublas.h"
#include "paddle/fluid/platform/dynload/cudnn.h"
#include "paddle/fluid/platform/dynload/curand.h"
G
Guo Sheng 已提交
80
#include "paddle/fluid/platform/dynload/cusolver.h"
81
#if !defined(__APPLE__) && defined(PADDLE_WITH_NCCL)
L
lilong12 已提交
82
#include <error.h>
Y
Yi Wang 已提交
83
#include "paddle/fluid/platform/dynload/nccl.h"
Y
Yi Wang 已提交
84 85
#endif  // __APPLE__
#endif  // PADDLE_WITH_CUDA
86

87 88 89 90 91 92 93 94 95 96
#ifdef PADDLE_WITH_HIP
#include "paddle/fluid/platform/dynload/hiprand.h"
#include "paddle/fluid/platform/dynload/miopen.h"
#include "paddle/fluid/platform/dynload/rocblas.h"
#if !defined(__APPLE__) && defined(PADDLE_WITH_RCCL)
#include <error.h>  // NOLINT
#include "paddle/fluid/platform/dynload/rccl.h"
#endif  // __APPLE__
#endif  // PADDLE_WITH_HIP

97 98 99
// Note: these headers for simplify demangle type string
#include "paddle/fluid/framework/type_defs.h"
#include "paddle/fluid/imperative/type_defs.h"
100 101 102 103
// Note: this header for simplify HIP and CUDA type string
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
#include "paddle/fluid/platform/type_defs.h"
#endif
W
wanghuancoder 已提交
104 105 106 107 108 109

namespace paddle {
namespace platform {
class ErrorSummary;
}  // namespace platform
}  // namespace paddle
110

111
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
112 113
DECLARE_int64(gpu_allocator_retry_time);
#endif
114 115
DECLARE_int32(call_stack_level);

116 117 118
namespace paddle {
namespace platform {

119 120
/** HELPER MACROS AND FUNCTIONS **/

Z
Zeng Jinle 已提交
121 122 123 124
#ifndef PADDLE_MAY_THROW
#define PADDLE_MAY_THROW noexcept(false)
#endif

125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
// Because most enforce conditions would evaluate to true, we can use
// __builtin_expect to instruct the C++ compiler to generate code that
// always forces branch prediction of true.
// This generates faster binary code. __builtin_expect is since C++11.
// For more details, please check https://stackoverflow.com/a/43870188/724872.
#if !defined(_WIN32)
#define UNLIKELY(condition) __builtin_expect(static_cast<bool>(condition), 0)
#else
// there is no equivalent intrinsics in msvc.
#define UNLIKELY(condition) (condition)
#endif

#if !defined(_WIN32)
#define LIKELY(condition) __builtin_expect(static_cast<bool>(condition), 1)
#else
// there is no equivalent intrinsics in msvc.
#define LIKELY(condition) (condition)
#endif

144 145 146 147 148 149 150 151 152 153 154 155 156
#if defined _WIN32 && defined PADDLE_ON_INFERENCE && defined PADDLE_NO_PYTHON
#define HANDLE_THE_ERROR try {
#define END_HANDLE_THE_ERROR            \
  }                                     \
  catch (const std::exception& e) {     \
    std::cout << e.what() << std::endl; \
    throw;                              \
  }
#else
#define HANDLE_THE_ERROR
#define END_HANDLE_THE_ERROR
#endif

L
liaogang 已提交
157 158 159 160 161 162 163 164 165 166 167
#ifdef __GNUC__
inline std::string demangle(std::string name) {
  int status = -4;  // some arbitrary value to eliminate the compiler warning
  std::unique_ptr<char, void (*)(void*)> res{
      abi::__cxa_demangle(name.c_str(), NULL, NULL, &status), std::free};
  return (status == 0) ? res.get() : name;
}
#else
inline std::string demangle(std::string name) { return name; }
#endif

168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
namespace details {
template <typename T>
inline constexpr bool IsArithmetic() {
  return std::is_arithmetic<T>::value;
}

template <typename T1, typename T2, bool kIsArithmetic /* = true */>
struct TypeConverterImpl {
  using Type1 = typename std::common_type<T1, T2>::type;
  using Type2 = Type1;
};

template <typename T1, typename T2>
struct TypeConverterImpl<T1, T2, false> {
  using Type1 = T1;
  using Type2 = T2;
};

template <typename T1, typename T2>
struct TypeConverter {
 private:
  static constexpr bool kIsArithmetic =
      IsArithmetic<T1>() && IsArithmetic<T2>();

 public:
  using Type1 = typename TypeConverterImpl<T1, T2, kIsArithmetic>::Type1;
  using Type2 = typename TypeConverterImpl<T1, T2, kIsArithmetic>::Type2;
};

template <typename T1, typename T2>
using CommonType1 = typename std::add_lvalue_reference<
    typename std::add_const<typename TypeConverter<T1, T2>::Type1>::type>::type;

template <typename T1, typename T2>
using CommonType2 = typename std::add_lvalue_reference<
    typename std::add_const<typename TypeConverter<T1, T2>::Type2>::type>::type;

// Here, we use SFINAE to check whether T can be converted to std::string
template <typename T>
struct CanToString {
 private:
  using YesType = uint8_t;
  using NoType = uint16_t;

  template <typename U>
  static YesType Check(decltype(std::cout << std::declval<U>())) {
    return 0;
  }

  template <typename U>
  static NoType Check(...) {
    return 0;
  }

 public:
  static constexpr bool kValue =
      std::is_same<YesType, decltype(Check<T>(std::cout))>::value;
};

template <bool kCanToString /* = true */>
struct BinaryCompareMessageConverter {
  template <typename T>
  static std::string Convert(const char* expression, const T& value) {
    return expression + std::string(":") + string::to_string(value);
  }
};

template <>
struct BinaryCompareMessageConverter<false> {
  template <typename T>
  static const char* Convert(const char* expression, const T& value) {
    return expression;
  }
};
}  // namespace details

244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
template <typename T>
inline std::string ReplaceComplexTypeStr(std::string str,
                                         const std::string& type_name) {
  auto demangle_type_str = demangle(typeid(T).name());
  size_t start_pos = 0;
  while ((start_pos = str.find(demangle_type_str, start_pos)) !=
         std::string::npos) {
    str.replace(start_pos, demangle_type_str.length(), type_name);
    start_pos += type_name.length();
  }
  return str;
}

#define __REPLACE_COMPLEX_TYPE_STR__(__TYPENAME, __STR)                       \
  do {                                                                        \
    __STR = paddle::platform::ReplaceComplexTypeStr<__TYPENAME>(__STR,        \
                                                                #__TYPENAME); \
  } while (0)

inline std::string SimplifyDemangleStr(std::string str) {
  // the older is important, you have to put complex types in front
  __REPLACE_COMPLEX_TYPE_STR__(paddle::framework::AttributeMap, str);
  __REPLACE_COMPLEX_TYPE_STR__(paddle::framework::Attribute, str);
  __REPLACE_COMPLEX_TYPE_STR__(paddle::imperative::NameVariableWrapperMap, str);
  __REPLACE_COMPLEX_TYPE_STR__(paddle::imperative::NameVarBaseMap, str);
  __REPLACE_COMPLEX_TYPE_STR__(std::string, str);
  return str;
}

273
inline std::string GetCurrentTraceBackString() {
274 275
  std::ostringstream sout;

276 277 278
  sout << "\n\n--------------------------------------\n";
  sout << "C++ Traceback (most recent call last):";
  sout << "\n--------------------------------------\n";
chen.zhiyu's avatar
chen.zhiyu 已提交
279 280 281
#if !defined(_WIN32) && !defined(PADDLE_WITH_MUSL)
  static constexpr int TRACE_STACK_LIMIT = 100;

282 283 284 285
  void* call_stack[TRACE_STACK_LIMIT];
  auto size = backtrace(call_stack, TRACE_STACK_LIMIT);
  auto symbols = backtrace_symbols(call_stack, size);
  Dl_info info;
286
  int idx = 0;
287
  for (int i = size - 1; i >= 0; --i) {
288 289
    if (dladdr(call_stack[i], &info) && info.dli_sname) {
      auto demangled = demangle(info.dli_sname);
290 291 292
      std::string path(info.dli_fname);
      // C++ traceback info are from core.so
      if (path.substr(path.length() - 3).compare(".so") == 0) {
293 294
        sout << string::Sprintf("%-3d %s\n", idx++,
                                SimplifyDemangleStr(demangled));
295
      }
296 297 298 299
    }
  }
  free(symbols);
#else
chen.zhiyu's avatar
chen.zhiyu 已提交
300
  sout << "Not support stack backtrace yet.\n";
301
#endif
302 303 304 305 306 307 308
  return sout.str();
}

template <typename StrType>
inline std::string GetErrorSumaryString(StrType&& what, const char* file,
                                        int line) {
  std::ostringstream sout;
309 310 311 312
  if (FLAGS_call_stack_level > 1) {
    sout << "\n----------------------\nError Message "
            "Summary:\n----------------------\n";
  }
313
  sout << string::Sprintf("%s (at %s:%d)", std::forward<StrType>(what), file,
314 315
                          line)
       << std::endl;
316 317 318
  return sout.str();
}

319 320 321 322 323 324 325 326 327 328 329
template <typename StrType>
inline std::string GetTraceBackString(StrType&& what, const char* file,
                                      int line) {
  if (FLAGS_call_stack_level > 1) {
    // FLAGS_call_stack_level>1 means showing c++ call stack
    return GetCurrentTraceBackString() + GetErrorSumaryString(what, file, line);
  } else {
    return GetErrorSumaryString(what, file, line);
  }
}

330 331 332 333 334 335 336 337 338 339 340
inline std::string SimplifyErrorTypeFormat(const std::string& str) {
  std::ostringstream sout;
  size_t type_end_pos = str.find(":", 0);
  if (type_end_pos == std::string::npos) {
    sout << str;
  } else {
    // Remove "Error:", add "()""
    sout << "(" << str.substr(0, type_end_pos - 5) << ")"
         << str.substr(type_end_pos + 1);
  }
  return sout.str();
341 342
}

343 344
inline bool is_error(bool stat) { return !stat; }

345
// Note: This Macro can only be used within enforce.h
346 347 348 349 350 351
#define __THROW_ERROR_INTERNAL__(__ERROR_SUMMARY)                      \
  do {                                                                 \
    HANDLE_THE_ERROR                                                   \
    throw ::paddle::platform::EnforceNotMet(__ERROR_SUMMARY, __FILE__, \
                                            __LINE__);                 \
    END_HANDLE_THE_ERROR                                               \
352 353
  } while (0)

354 355
/** ENFORCE EXCEPTION AND MACROS **/

356
struct EnforceNotMet : public std::exception {
357
 public:
358
  EnforceNotMet(std::exception_ptr e, const char* file, int line) {
359
    try {
Y
Yu Yang 已提交
360
      std::rethrow_exception(e);
361 362 363 364
    } catch (platform::EnforceNotMet& e) {
      code_ = e.code();
      err_str_ = GetTraceBackString(e.what(), file, line);
      simple_err_str_ = SimplifyErrorTypeFormat(err_str_);
Y
Yu Yang 已提交
365
    } catch (std::exception& e) {
366
      err_str_ = GetTraceBackString(e.what(), file, line);
367
      simple_err_str_ = SimplifyErrorTypeFormat(err_str_);
Y
Yu Yang 已提交
368 369
    }
  }
370

371
  EnforceNotMet(const std::string& str, const char* file, int line)
372 373 374
      : err_str_(GetTraceBackString(str, file, line)) {
    simple_err_str_ = SimplifyErrorTypeFormat(err_str_);
  }
Y
Yu Yang 已提交
375

376 377 378 379 380
  EnforceNotMet(const ErrorSummary& error, const char* file, int line)
      : code_(error.code()),
        err_str_(GetTraceBackString(error.to_string(), file, line)) {
    simple_err_str_ = SimplifyErrorTypeFormat(err_str_);
  }
381

382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
  const char* what() const noexcept override {
    if (FLAGS_call_stack_level > 1) {
      return err_str_.c_str();
    } else {
      return simple_err_str_.c_str();
    }
  }

  error::Code code() const { return code_; }

  const std::string& error_str() const { return err_str_; }

  const std::string& simple_error_str() const { return simple_err_str_; }

  void set_error_str(std::string str) {
    if (FLAGS_call_stack_level > 1) {
      err_str_ = str;
    } else {
      simple_err_str_ = str;
    }
  }
403

404 405 406 407 408
 private:
  // Used to determine the final type of exception thrown
  error::Code code_ = error::LEGACY;
  // Complete error message
  // e.g. InvalidArgumentError: ***
409
  std::string err_str_;
410 411 412
  // Simple errror message used when no C++ stack and python compile stack
  // e.g. (InvalidArgument) ***
  std::string simple_err_str_;
413 414
};

415 416
#define PADDLE_THROW(...)                                                   \
  do {                                                                      \
417
    HANDLE_THE_ERROR                                                        \
418 419
    throw ::paddle::platform::EnforceNotMet(                                \
        ::paddle::platform::ErrorSummary(__VA_ARGS__), __FILE__, __LINE__); \
420
    END_HANDLE_THE_ERROR                                                    \
421 422
  } while (0)

423 424 425 426
#if defined(__CUDA_ARCH__)
// For cuda, the assertions can affect performance and it is therefore
// recommended to disable them in production code
// https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#assertion
427 428 429 430 431 432 433
#define PADDLE_ENFORCE(_IS_NOT_ERROR, __FORMAT, ...)                         \
  do {                                                                       \
    if (!(_IS_NOT_ERROR)) {                                                  \
      printf("Error: %s:%d Assertion `%s` failed. " __FORMAT "\n", __FILE__, \
             __LINE__, #_IS_NOT_ERROR, ##__VA_ARGS__);                       \
      asm("trap;");                                                          \
    }                                                                        \
434
  } while (0)
435 436 437 438 439 440 441 442 443
#elif defined(__HIPCC__)
#define PADDLE_ENFORCE(_IS_NOT_ERROR, __FORMAT, ...)                         \
  do {                                                                       \
    if (!(_IS_NOT_ERROR)) {                                                  \
      printf("Error: %s:%d Assertion `%s` failed. " __FORMAT "\n", __FILE__, \
             __LINE__, #_IS_NOT_ERROR, ##__VA_ARGS__);                       \
      abort();                                                               \
    }                                                                        \
  } while (0)
444
#else
445 446 447 448 449 450
#define PADDLE_ENFORCE(COND, ...)                                              \
  do {                                                                         \
    auto __cond__ = (COND);                                                    \
    if (UNLIKELY(::paddle::platform::is_error(__cond__))) {                    \
      __THROW_ERROR_INTERNAL__(::paddle::platform::ErrorSummary(__VA_ARGS__)); \
    }                                                                          \
451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
  } while (0)
#endif

/*
 * Some enforce helpers here, usage:
 *    int a = 1;
 *    int b = 2;
 *    PADDLE_ENFORCE_EQ(a, b);
 *
 *    will raise an expression described as follows:
 *    "Expected input a == b, but received a(1) != b(2)."
 *      with detailed stack information.
 *
 *    extra messages is also supported, for example:
 *    PADDLE_ENFORCE(a, b, "some simple enforce failed between %d numbers", 2)
 */
467

468 469 470 471 472 473 474 475 476 477
#define PADDLE_ENFORCE_NOT_NULL(__VAL, ...)                                   \
  do {                                                                        \
    if (UNLIKELY(nullptr == (__VAL))) {                                       \
      auto __summary__ = ::paddle::platform::ErrorSummary(__VA_ARGS__);       \
      auto __message__ = ::paddle::string::Sprintf(                           \
          "%s\n  [Hint: " #__VAL " should not be null.]",                     \
          __summary__.error_message());                                       \
      __THROW_ERROR_INTERNAL__(                                               \
          ::paddle::platform::ErrorSummary(__summary__.code(), __message__)); \
    }                                                                         \
478 479
  } while (0)

480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
#define __PADDLE_BINARY_COMPARE(__VAL1, __VAL2, __CMP, __INV_CMP, ...)        \
  do {                                                                        \
    auto __val1 = (__VAL1);                                                   \
    auto __val2 = (__VAL2);                                                   \
    using __TYPE1__ = decltype(__val1);                                       \
    using __TYPE2__ = decltype(__val2);                                       \
    using __COMMON_TYPE1__ =                                                  \
        ::paddle::platform::details::CommonType1<__TYPE1__, __TYPE2__>;       \
    using __COMMON_TYPE2__ =                                                  \
        ::paddle::platform::details::CommonType2<__TYPE1__, __TYPE2__>;       \
    bool __is_not_error = (static_cast<__COMMON_TYPE1__>(__val1))__CMP(       \
        static_cast<__COMMON_TYPE2__>(__val2));                               \
    if (UNLIKELY(!__is_not_error)) {                                          \
      auto __summary__ = ::paddle::platform::ErrorSummary(__VA_ARGS__);       \
      constexpr bool __kCanToString__ =                                       \
          ::paddle::platform::details::CanToString<__TYPE1__>::kValue &&      \
          ::paddle::platform::details::CanToString<__TYPE2__>::kValue;        \
      auto __message__ = ::paddle::string::Sprintf(                           \
          "%s\n  [Hint: Expected %s " #__CMP                                  \
          " %s, but received %s " #__INV_CMP " %s.]",                         \
          __summary__.error_message(), #__VAL1, #__VAL2,                      \
          ::paddle::platform::details::BinaryCompareMessageConverter<         \
              __kCanToString__>::Convert(#__VAL1, __val1),                    \
          ::paddle::platform::details::BinaryCompareMessageConverter<         \
              __kCanToString__>::Convert(#__VAL2, __val2));                   \
      __THROW_ERROR_INTERNAL__(                                               \
          ::paddle::platform::ErrorSummary(__summary__.code(), __message__)); \
    }                                                                         \
508 509 510 511 512 513 514 515 516 517 518 519 520 521 522
  } while (0)

#define PADDLE_ENFORCE_EQ(__VAL0, __VAL1, ...) \
  __PADDLE_BINARY_COMPARE(__VAL0, __VAL1, ==, !=, __VA_ARGS__)
#define PADDLE_ENFORCE_NE(__VAL0, __VAL1, ...) \
  __PADDLE_BINARY_COMPARE(__VAL0, __VAL1, !=, ==, __VA_ARGS__)
#define PADDLE_ENFORCE_GT(__VAL0, __VAL1, ...) \
  __PADDLE_BINARY_COMPARE(__VAL0, __VAL1, >, <=, __VA_ARGS__)
#define PADDLE_ENFORCE_GE(__VAL0, __VAL1, ...) \
  __PADDLE_BINARY_COMPARE(__VAL0, __VAL1, >=, <, __VA_ARGS__)
#define PADDLE_ENFORCE_LT(__VAL0, __VAL1, ...) \
  __PADDLE_BINARY_COMPARE(__VAL0, __VAL1, <, >=, __VA_ARGS__)
#define PADDLE_ENFORCE_LE(__VAL0, __VAL1, ...) \
  __PADDLE_BINARY_COMPARE(__VAL0, __VAL1, <=, >, __VA_ARGS__)

523 524
/** EXTENDED TOOL FUNCTIONS WITH CHECKING **/

525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546
/*
 * Summary: This macro is used to get Variable or internal type
 *   data (such as LoDTensor or SelectedRows) of the Input and
 *   Output in op, generally used when call scope.FindVar(Input/
 *   Output("Name")) or ctx.Input<LoDTensor>().
 *   Firstly this macro check whether the obtained pointer is null,
 *   and then return data if it is not null.
 *
 * Note: This macro is only suitable for specific scenarios and
 *   does not intended to be widely used. If it cannot meet the
 *   requirements, please use other PADDLE_ENFORCE** check macro.
 *
 * Parameters:
 *     __PTR: pointer
 *     __ROLE: (string), Input or Output
 *     __NAME: (string), Input or Output name
 *     __OP_TYPE: (string), the op type
 *  
 * Return: The data pointed to by the pointer.
 *
 * Examples:
 *    GET_DATA_SAFELY(ctx.Input<LoDTensor>("X"), "Input", "X", "Mul");
547
 */
548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569
#define GET_DATA_SAFELY(__PTR, __ROLE, __NAME, __OP_TYPE)                     \
  (([&]() -> std::add_lvalue_reference<decltype(*(__PTR))>::type {            \
    auto* __ptr = (__PTR);                                                    \
    if (UNLIKELY(nullptr == __ptr)) {                                         \
      auto __summary__ = paddle::platform::errors::NotFound(                  \
          "Unable to get %s data of %s %s in operator %s. "                   \
          "Possible reasons are:\n"                                           \
          "  1. The %s is not the %s of operator %s;\n"                       \
          "  2. The %s has no corresponding variable passed in;\n"            \
          "  3. The %s corresponding variable is not initialized.",           \
          paddle::platform::demangle(                                         \
              typeid(std::add_lvalue_reference<decltype(*__ptr)>::type)       \
                  .name()),                                                   \
          __ROLE, __NAME, __OP_TYPE, __NAME, __ROLE, __OP_TYPE, __NAME,       \
          __NAME);                                                            \
      auto __message__ = ::paddle::string::Sprintf(                           \
          "%s\n  [Hint: pointer " #__PTR " should not be null.]",             \
          __summary__.error_message());                                       \
      __THROW_ERROR_INTERNAL__(                                               \
          ::paddle::platform::ErrorSummary(__summary__.code(), __message__)); \
    }                                                                         \
    return *__ptr;                                                            \
570 571
  })())

572 573 574 575 576 577 578 579 580 581 582 583 584
/*
 * Summary: This macro is used to check whether op has specified
 * Input or Output Variables. Because op's Input and Output
 * checking are written similarly, so abstract this macro.
 *
 * Parameters:
 *     __EXPR: (bool), the bool expression
 *     __ROLE: (string), Input or Output
 *     __NAME: (string), Input or Output name
 *     __OP_TYPE: (string), the op type
 *
 * Examples:
 *    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "Mul");
585
 */
586 587 588 589 590 591 592
#define OP_INOUT_CHECK(__EXPR, __ROLE, __NAME, __OP_TYPE)                   \
  do {                                                                      \
    PADDLE_ENFORCE_EQ(__EXPR, true, paddle::platform::errors::NotFound(     \
                                        "No %s(%s) found for %s operator.", \
                                        __ROLE, __NAME, __OP_TYPE));        \
  } while (0)

593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612
/*
 * Summary: This BOOST_GET(_**) series macros are used to call boost::get
 *   safely. boost::get is not a completely safe api, although it will not
 *   go wrong in most cases, but in extreme cases, it may fail and directly
 *   throw a boost::bad_get exception, without any stack information.
 *   This kind of problems is difficult to debug, so add these macros to
 *   enrich boost::get error information. At the same time, we restrict
 *   the direct use of boost::get by CI rule.
 *
 * Parameters:
 *     __TYPE: the target variable type
 *     __VALUE: the target variable to get
 *
 * Examples:
 *     - unsafe writing: int x = boost::get<int>(y);
 *     - safe writing: int x = BOOST_GET(int, y);
 *
 * Note: GCC 4.8 cannot select right overloaded function here, so need
 *    to define different functions and macros here, after we upgreade
 *    CI gcc version, we can only define one BOOST_GET macro.
613
 */
614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656
namespace details {

#define DEFINE_SAFE_BOOST_GET(__InputType, __OutputType, __OutputTypePtr,      \
                              __FuncName)                                      \
  template <typename OutputType, typename InputType>                           \
  auto __FuncName(__InputType input, const char* expression, const char* file, \
                  int line)                                                    \
      ->typename std::conditional<std::is_pointer<InputType>::value,           \
                                  __OutputTypePtr, __OutputType>::type {       \
    try {                                                                      \
      return boost::get<OutputType>(input);                                    \
    } catch (boost::bad_get&) {                                                \
      HANDLE_THE_ERROR                                                         \
      throw ::paddle::platform::EnforceNotMet(                                 \
          ::paddle::platform::errors::InvalidArgument(                         \
              "boost::get failed, cannot get value "                           \
              "(%s) by type %s, its type is %s.",                              \
              expression,                                                      \
              paddle::platform::demangle(typeid(OutputType).name()),           \
              paddle::platform::demangle(input.type().name())),                \
          file, line);                                                         \
      END_HANDLE_THE_ERROR                                                     \
    }                                                                          \
  }

DEFINE_SAFE_BOOST_GET(InputType&, OutputType&, OutputType*, SafeBoostGet);
DEFINE_SAFE_BOOST_GET(const InputType&, const OutputType&, const OutputType*,
                      SafeBoostGetConst);
DEFINE_SAFE_BOOST_GET(InputType&&, OutputType, OutputType*,
                      SafeBoostGetMutable);

}  // namespace details

#define BOOST_GET(__TYPE, __VALUE)                                     \
  ::paddle::platform::details::SafeBoostGet<__TYPE>(__VALUE, #__VALUE, \
                                                    __FILE__, __LINE__)
#define BOOST_GET_CONST(__TYPE, __VALUE)                                    \
  ::paddle::platform::details::SafeBoostGetConst<__TYPE>(__VALUE, #__VALUE, \
                                                         __FILE__, __LINE__)
#define BOOST_GET_MUTABLE(__TYPE, __VALUE)                                    \
  ::paddle::platform::details::SafeBoostGetMutable<__TYPE>(__VALUE, #__VALUE, \
                                                           __FILE__, __LINE__)

657 658
/** OTHER EXCEPTION AND ENFORCE **/

659 660
struct EOFException : public std::exception {
  std::string err_str_;
661 662
  EOFException(const char* err_msg, const char* file, int line) {
    err_str_ = string::Sprintf("%s at [%s:%d]", err_msg, file, line);
663 664
  }

665
  const char* what() const noexcept override { return err_str_.c_str(); }
666 667
};

668 669
#define PADDLE_THROW_EOF()                                                     \
  do {                                                                         \
670
    HANDLE_THE_ERROR                                                           \
671 672
    throw ::paddle::platform::EOFException("There is no next data.", __FILE__, \
                                           __LINE__);                          \
673
    END_HANDLE_THE_ERROR                                                       \
674
  } while (0)
675

676 677 678 679 680 681 682
#define PADDLE_THROW_BAD_ALLOC(...)                                          \
  do {                                                                       \
    HANDLE_THE_ERROR                                                         \
    throw ::paddle::memory::allocation::BadAlloc(                            \
        ::paddle::platform::ErrorSummary(__VA_ARGS__).to_string(), __FILE__, \
        __LINE__);                                                           \
    END_HANDLE_THE_ERROR                                                     \
683
  } while (0)
M
minqiyang 已提交
684

685
/** CUDA PADDLE ENFORCE FUNCTIONS AND MACROS **/
686
#ifdef PADDLE_WITH_CUDA
687

688
/***** CUDA ERROR *****/
S
sneaxiy 已提交
689
inline bool is_error(cudaError_t e) { return e != cudaSuccess; }
M
minqiyang 已提交
690

691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776
inline std::string GetCudaErrorWebsite(int32_t cuda_version) {
  std::ostringstream webstr;
  webstr << "https://docs.nvidia.com/cuda/";
  if (cuda_version != -1) {
    double version = cuda_version / 10;
    webstr << "archive/" << std::fixed << std::setprecision(1) << version;
  }
  webstr << "/cuda-runtime-api/group__CUDART__TYPES.html"
            "#group__CUDART__TYPES_1g3f51e3575c2178246db0a94a430e0038";
  return webstr.str();
}

inline std::string build_nvidia_error_msg(cudaError_t e) {
#if CUDA_VERSION >= 10000 && CUDA_VERSION < 11000
  int32_t cuda_version = 100;
#elif CUDA_VERSION >= 9000
  int32_t cuda_version = 90;
#else
  int32_t cuda_version = -1;
#endif
  std::ostringstream sout;
  sout << " Cuda error(" << e << "), " << cudaGetErrorString(e) << ".";
  static platform::proto::cudaerrorDesc cudaerror;
  static bool _initSucceed = false;
  if (cudaerror.ByteSizeLong() == 0) {
    std::string filePath;
#if !defined(_WIN32)
    Dl_info info;
    if (dladdr(reinterpret_cast<void*>(GetCudaErrorWebsite), &info)) {
      std::string strModule(info.dli_fname);
      const size_t last_slash_idx = strModule.find_last_of("/");
      std::string compare_path = strModule.substr(strModule.length() - 6);
      if (std::string::npos != last_slash_idx) {
        strModule.erase(last_slash_idx, std::string::npos);
      }
      if (compare_path.compare("avx.so") == 0) {
        filePath = strModule +
                   "/../include/third_party/cudaerror/data/cudaErrorMessage.pb";
      } else {
        filePath =
            strModule + "/../../thirl_party/cudaerror/data/cudaErrorMessage.pb";
      }
    }
#else
    char buf[100];
    MEMORY_BASIC_INFORMATION mbi;
    HMODULE h_module =
        (::VirtualQuery(GetCudaErrorWebsite, &mbi, sizeof(mbi)) != 0)
            ? (HMODULE)mbi.AllocationBase
            : NULL;
    GetModuleFileName(h_module, buf, 100);
    std::string strModule(buf);
    const size_t last_slash_idx = strModule.find_last_of("\\");
    std::string compare_path = strModule.substr(strModule.length() - 7);
    if (std::string::npos != last_slash_idx) {
      strModule.erase(last_slash_idx, std::string::npos);
    }
    if (compare_path.compare("avx.pyd") == 0) {
      filePath =
          strModule +
          "\\..\\include\\third_party\\cudaerror\\data\\cudaErrorMessage.pb";
    } else {
      filePath =
          strModule + "\\..\\third_party\\cudaerror\\data\\cudaErrorMessage.pb";
    }
#endif
    std::ifstream fin(filePath, std::ios::in | std::ios::binary);
    _initSucceed = cudaerror.ParseFromIstream(&fin);
  }
  if (_initSucceed) {
    for (int i = 0; i < cudaerror.allmessages_size(); ++i) {
      if (cuda_version == cudaerror.allmessages(i).version()) {
        for (int j = 0; j < cudaerror.allmessages(i).messages_size(); ++j) {
          if (e == cudaerror.allmessages(i).messages(j).errorcode()) {
            sout << "\n  [Advise: "
                 << cudaerror.allmessages(i).messages(j).errormessage() << "]";
            return sout.str();
          }
        }
      }
    }
  }
  sout << "\n  [Advise: Please search for the error code(" << e
       << ") on website( " << GetCudaErrorWebsite(cuda_version)
       << " ) to get Nvidia's official solution about CUDA Error.]";
  return sout.str();
777 778
}

779
/** curand ERROR **/
M
minqiyang 已提交
780 781
inline bool is_error(curandStatus_t stat) {
  return stat != CURAND_STATUS_SUCCESS;
782 783
}

784 785 786
inline const char* curandGetErrorString(curandStatus_t stat) {
  switch (stat) {
    case CURAND_STATUS_SUCCESS:
787
      return "`CURAND_STATUS_SUCCESS`. No errors.";
788
    case CURAND_STATUS_VERSION_MISMATCH:
789 790
      return "`CURAND_STATUS_VERSION_MISMATCH`. Header file and linked library "
             "version do not match.";
791
    case CURAND_STATUS_NOT_INITIALIZED:
792
      return "`CURAND_STATUS_NOT_INITIALIZED`. Generator not initialized.";
793
    case CURAND_STATUS_ALLOCATION_FAILED:
794
      return "`CURAND_STATUS_ALLOCATION_FAILED`. Memory allocation failed.";
795
    case CURAND_STATUS_TYPE_ERROR:
796
      return "`CURAND_STATUS_TYPE_ERROR`. Generator is wrong type.";
797
    case CURAND_STATUS_OUT_OF_RANGE:
798
      return "`CURAND_STATUS_OUT_OF_RANGE`. Argument out of range.";
799
    case CURAND_STATUS_LENGTH_NOT_MULTIPLE:
800 801
      return "`CURAND_STATUS_LENGTH_NOT_MULTIPLE`. Length requested is not a "
             "multple of dimension.";
802
    case CURAND_STATUS_DOUBLE_PRECISION_REQUIRED:
803 804
      return "`CURAND_STATUS_DOUBLE_PRECISION_REQUIRED`. GPU does not have "
             "double precision required by MRG32k3a.";
805
    case CURAND_STATUS_LAUNCH_FAILURE:
806
      return "`CURAND_STATUS_LAUNCH_FAILURE`. Kernel launch failure.";
807
    case CURAND_STATUS_PREEXISTING_FAILURE:
808 809
      return "`CURAND_STATUS_PREEXISTING_FAILURE`. Preexisting failure on "
             "library entry.";
810
    case CURAND_STATUS_INITIALIZATION_FAILED:
811 812
      return "`CURAND_STATUS_INITIALIZATION_FAILED`. Initialization of CUDA "
             "failed.";
813
    case CURAND_STATUS_ARCH_MISMATCH:
814 815
      return "`CURAND_STATUS_ARCH_MISMATCH`. Architecture mismatch, GPU does "
             "not support requested feature.";
816
    case CURAND_STATUS_INTERNAL_ERROR:
817
      return "`CURAND_STATUS_INTERNAL_ERROR`. Internal library error.";
818 819 820 821 822 823 824 825
    default:
      return "Unknown curand status";
  }
}

inline std::string build_nvidia_error_msg(curandStatus_t stat) {
  std::string msg(" Curand error, ");
  return msg + curandGetErrorString(stat) + " ";
826 827
}

828
/***** CUDNN ERROR *****/
M
minqiyang 已提交
829 830
inline bool is_error(cudnnStatus_t stat) {
  return stat != CUDNN_STATUS_SUCCESS;
831 832
}

833 834 835
inline std::string build_nvidia_error_msg(cudnnStatus_t stat) {
  std::string msg(" Cudnn error, ");
  return msg + platform::dynload::cudnnGetErrorString(stat) + " ";
836 837
}

838
/***** CUBLAS ERROR *****/
M
minqiyang 已提交
839 840
inline bool is_error(cublasStatus_t stat) {
  return stat != CUBLAS_STATUS_SUCCESS;
841 842
}

843 844 845
inline const char* cublasGetErrorString(cublasStatus_t stat) {
  switch (stat) {
    case CUBLAS_STATUS_NOT_INITIALIZED:
846 847
      return "`CUBLAS_STATUS_NOT_INITIALIZED`. The cuBLAS library was not "
             "initialized.";
848
    case CUBLAS_STATUS_ALLOC_FAILED:
849 850
      return "`CUBLAS_STATUS_ALLOC_FAILED`. Resource allocation failed inside "
             "the cuBLAS library.";
851
    case CUBLAS_STATUS_INVALID_VALUE:
852 853 854
      return "`CUBLAS_STATUS_INVALID_VALUE`. An unsupported value or parameter "
             "was passed to the function (a negative vector size, for "
             "example).";
855
    case CUBLAS_STATUS_ARCH_MISMATCH:
856 857 858
      return "`CUBLAS_STATUS_ARCH_MISMATCH`. The function requires a feature "
             "absent from the device architecture; usually caused by the lack "
             "of support for double precision.";
859
    case CUBLAS_STATUS_MAPPING_ERROR:
860 861
      return "`CUBLAS_STATUS_MAPPING_ERROR`. An access to GPU memory space "
             "failed, which is usually caused by a failure to bind a texture.";
862
    case CUBLAS_STATUS_EXECUTION_FAILED:
863 864 865
      return "`CUBLAS_STATUS_EXECUTION_FAILED`. The GPU program failed to "
             "execute. This is often caused by a launch failure of the kernel "
             "on the GPU, which can be caused by multiple reasons.";
866
    case CUBLAS_STATUS_INTERNAL_ERROR:
867 868 869
      return "`CUBLAS_STATUS_INTERNAL_ERROR`. An internal cuBLAS operation "
             "failed. This error is usually caused by a cudaMemcpyAsync() "
             "failure.";
870
    case CUBLAS_STATUS_NOT_SUPPORTED:
871 872
      return "`CUBLAS_STATUS_NOT_SUPPORTED`. The functionality requested is "
             "not supported.";
873
    case CUBLAS_STATUS_LICENSE_ERROR:
874 875 876
      return "`CUBLAS_STATUS_LICENSE_ERROR`. The functionality requested "
             "requires some license and an error was detected when trying to "
             "check the current licensing.";
877 878
    default:
      return "Unknown cublas status";
879
  }
880 881 882 883 884
}

inline std::string build_nvidia_error_msg(cublasStatus_t stat) {
  std::string msg(" Cublas error, ");
  return msg + cublasGetErrorString(stat) + " ";
885 886
}

G
Guo Sheng 已提交
887 888 889 890 891 892 893 894
/***** CUSOLVER ERROR *****/
inline bool is_error(cusolverStatus_t stat) {
  return stat != CUSOLVER_STATUS_SUCCESS;
}

inline const char* cusolverGetErrorString(cusolverStatus_t stat) {
  switch (stat) {
    case CUSOLVER_STATUS_NOT_INITIALIZED:
895 896 897 898
      return "`CUSOLVER_STATUS_NOT_INITIALIZED`. The cuSolver library was not "
             "initialized. This is usually caused by the lack of a prior call, "
             "an error in the CUDA Runtime API called by the cuSolver routine, "
             "or an error in the hardware setup.";
G
Guo Sheng 已提交
899
    case CUSOLVER_STATUS_ALLOC_FAILED:
900 901 902
      return "`CUSOLVER_STATUS_ALLOC_FAILED`. Resource allocation failed "
             "inside the cuSolver library. This is usually caused by a "
             "cudaMalloc() failure.";
G
Guo Sheng 已提交
903
    case CUSOLVER_STATUS_INVALID_VALUE:
904 905 906
      return "`CUSOLVER_STATUS_INVALID_VALUE`. An unsupported value or "
             "parameter was passed to the function (a negative vector size, "
             "for example).";
G
Guo Sheng 已提交
907
    case CUSOLVER_STATUS_ARCH_MISMATCH:
908 909 910
      return "`CUSOLVER_STATUS_ARCH_MISMATCH`. The function requires a feature "
             "absent from the device architecture; usually caused by the lack "
             "of support for atomic operations or double precision.";
G
Guo Sheng 已提交
911
    case CUSOLVER_STATUS_EXECUTION_FAILED:
912 913 914
      return "`CUSOLVER_STATUS_EXECUTION_FAILED`. The GPU program failed to "
             "execute. This is often caused by a launch failure of the kernel "
             "on the GPU, which can be caused by multiple reasons.";
G
Guo Sheng 已提交
915
    case CUSOLVER_STATUS_INTERNAL_ERROR:
916 917 918
      return "`CUSOLVER_STATUS_INTERNAL_ERROR`. An internal cuSolver operation "
             "failed. This error is usually caused by a cudaMemcpyAsync() "
             "failure.";
G
Guo Sheng 已提交
919
    case CUSOLVER_STATUS_MATRIX_TYPE_NOT_SUPPORTED:
920 921 922
      return "`CUSOLVER_STATUS_MATRIX_TYPE_NOT_SUPPORTED`. The matrix type is "
             "not supported by this function. This is usually caused by "
             "passing an invalid matrix descriptor to the function.";
G
Guo Sheng 已提交
923 924 925 926
    default:
      return "Unknown cusolver status";
  }
}
927

G
Guo Sheng 已提交
928 929 930 931 932
inline std::string build_nvidia_error_msg(cusolverStatus_t stat) {
  std::string msg(" Cublas error, ");
  return msg + cusolverGetErrorString(stat) + " ";
}

933
/****** NCCL ERROR ******/
934
#if !defined(__APPLE__) && defined(PADDLE_WITH_NCCL)
S
sneaxiy 已提交
935 936 937 938
inline bool is_error(ncclResult_t nccl_result) {
  return nccl_result != ncclSuccess;
}

939 940
inline std::string build_nvidia_error_msg(ncclResult_t nccl_result) {
  std::string msg(" Nccl error, ");
L
lilong12 已提交
941 942 943 944 945 946 947 948 949 950 951 952
  if (errno == ENOSPC || errno == EAGAIN) {
    std::string detail(strerror(errno));
    detail += "\nPlease try one of the following solutions:";
    detail += "\n1. export NCCL_SHM_DISABLE=1;";
    detail += "\n2. export NCCL_P2P_LEVEL=SYS;";
    detail +=
        "\n3. Increase shared memory by setting the -shm-size "
        "option when starting docker container, e.g., setting "
        " -shm-size=2g.\n";
    return msg + platform::dynload::ncclGetErrorString(nccl_result) +
           ", detail: " + detail + " ";
  }
953
  return msg + platform::dynload::ncclGetErrorString(nccl_result) + " ";
954
}
955
#endif  // not(__APPLE__) and PADDLE_WITH_NCCL
956

957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972
namespace details {

template <typename T>
struct CudaStatusType {};

#define DEFINE_CUDA_STATUS_TYPE(type, success_value) \
  template <>                                        \
  struct CudaStatusType<type> {                      \
    using Type = type;                               \
    static constexpr Type kSuccess = success_value;  \
  }

DEFINE_CUDA_STATUS_TYPE(cudaError_t, cudaSuccess);
DEFINE_CUDA_STATUS_TYPE(curandStatus_t, CURAND_STATUS_SUCCESS);
DEFINE_CUDA_STATUS_TYPE(cudnnStatus_t, CUDNN_STATUS_SUCCESS);
DEFINE_CUDA_STATUS_TYPE(cublasStatus_t, CUBLAS_STATUS_SUCCESS);
G
Guo Sheng 已提交
973
DEFINE_CUDA_STATUS_TYPE(cusolverStatus_t, CUSOLVER_STATUS_SUCCESS);
974

975
#if !defined(__APPLE__) && defined(PADDLE_WITH_NCCL)
976 977 978
DEFINE_CUDA_STATUS_TYPE(ncclResult_t, ncclSuccess);
#endif
}  // namespace details
M
minqiyang 已提交
979

980 981 982 983 984 985 986 987 988 989 990 991
#define PADDLE_ENFORCE_CUDA_SUCCESS(COND)                        \
  do {                                                           \
    auto __cond__ = (COND);                                      \
    using __CUDA_STATUS_TYPE__ = decltype(__cond__);             \
    constexpr auto __success_type__ =                            \
        ::paddle::platform::details::CudaStatusType<             \
            __CUDA_STATUS_TYPE__>::kSuccess;                     \
    if (UNLIKELY(__cond__ != __success_type__)) {                \
      auto __summary__ = ::paddle::platform::errors::External(   \
          ::paddle::platform::build_nvidia_error_msg(__cond__)); \
      __THROW_ERROR_INTERNAL__(__summary__);                     \
    }                                                            \
992 993
  } while (0)

994
inline void retry_sleep(unsigned milliseconds) {
995
#ifdef _WIN32
996
  Sleep(milliseconds);
997
#else
998 999 1000 1001 1002 1003 1004 1005 1006
  if (milliseconds < 1000) {
    // usleep argument must be less than 1,000,000. Reference:
    // https://pubs.opengroup.org/onlinepubs/7908799/xsh/usleep.html
    usleep(milliseconds * 1000);
  } else {
    // clip to sleep in seconds because we can not and don't have to
    // sleep for exact milliseconds
    sleep(milliseconds / 1000);
  }
1007 1008 1009
#endif
}

1010 1011 1012 1013 1014 1015 1016 1017 1018
#define PADDLE_RETRY_CUDA_SUCCESS(COND)                                 \
  do {                                                                  \
    auto __cond__ = (COND);                                             \
    int retry_count = 1;                                                \
    using __CUDA_STATUS_TYPE__ = decltype(__cond__);                    \
    constexpr auto __success_type__ =                                   \
        ::paddle::platform::details::CudaStatusType<                    \
            __CUDA_STATUS_TYPE__>::kSuccess;                            \
    while (UNLIKELY(__cond__ != __success_type__) && retry_count < 5) { \
1019
      retry_sleep(FLAGS_gpu_allocator_retry_time);                      \
1020 1021 1022 1023 1024 1025 1026 1027 1028 1029
      __cond__ = (COND);                                                \
      ++retry_count;                                                    \
    }                                                                   \
    if (UNLIKELY(__cond__ != __success_type__)) {                       \
      auto __summary__ = ::paddle::platform::errors::External(          \
          ::paddle::platform::build_nvidia_error_msg(__cond__));        \
      __THROW_ERROR_INTERNAL__(__summary__);                            \
    }                                                                   \
  } while (0)

1030
#undef DEFINE_CUDA_STATUS_TYPE
1031
#endif  // PADDLE_WITH_CUDA
S
add EQ  
Superjom 已提交
1032

1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210
/** HIP PADDLE ENFORCE FUNCTIONS AND MACROS **/
#ifdef PADDLE_WITH_HIP

/***** HIP ERROR *****/
inline bool is_error(hipError_t e) { return e != hipSuccess; }

inline std::string build_rocm_error_msg(hipError_t e) {
  std::ostringstream sout;
  sout << " Hip error(" << e << "), " << hipGetErrorString(e) << ".";
  return sout.str();
}

/** HIPRAND ERROR **/
inline bool is_error(hiprandStatus_t stat) {
  return stat != HIPRAND_STATUS_SUCCESS;
}

inline const char* hiprandGetErrorString(hiprandStatus_t stat) {
  switch (stat) {
    case HIPRAND_STATUS_SUCCESS:
      return "HIPRAND_STATUS_SUCCESS";
    case HIPRAND_STATUS_VERSION_MISMATCH:
      return "HIPRAND_STATUS_VERSION_MISMATCH";
    case HIPRAND_STATUS_NOT_INITIALIZED:
      return "HIPRAND_STATUS_NOT_INITIALIZED";
    case HIPRAND_STATUS_ALLOCATION_FAILED:
      return "HIPRAND_STATUS_ALLOCATION_FAILED";
    case HIPRAND_STATUS_TYPE_ERROR:
      return "HIPRAND_STATUS_TYPE_ERROR";
    case HIPRAND_STATUS_OUT_OF_RANGE:
      return "HIPRAND_STATUS_OUT_OF_RANGE";
    case HIPRAND_STATUS_LENGTH_NOT_MULTIPLE:
      return "HIPRAND_STATUS_LENGTH_NOT_MULTIPLE";
    case HIPRAND_STATUS_DOUBLE_PRECISION_REQUIRED:
      return "HIPRAND_STATUS_DOUBLE_PRECISION_REQUIRED";
    case HIPRAND_STATUS_LAUNCH_FAILURE:
      return "HIPRAND_STATUS_LAUNCH_FAILURE";
    case HIPRAND_STATUS_PREEXISTING_FAILURE:
      return "HIPRAND_STATUS_PREEXISTING_FAILURE";
    case HIPRAND_STATUS_INITIALIZATION_FAILED:
      return "HIPRAND_STATUS_INITIALIZATION_FAILED";
    case HIPRAND_STATUS_ARCH_MISMATCH:
      return "HIPRAND_STATUS_ARCH_MISMATCH";
    case HIPRAND_STATUS_INTERNAL_ERROR:
      return "HIPRAND_STATUS_INTERNAL_ERROR";
    case HIPRAND_STATUS_NOT_IMPLEMENTED:
      return "HIPRAND_STATUS_NOT_IMPLEMENTED";
    default:
      return "Unknown hiprand status";
  }
}

inline std::string build_rocm_error_msg(hiprandStatus_t stat) {
  std::string msg(" Hiprand error, ");
  return msg + hiprandGetErrorString(stat) + " ";
}

/***** MIOPEN ERROR *****/
inline bool is_error(miopenStatus_t stat) {
  return stat != miopenStatusSuccess;
}

inline std::string build_rocm_error_msg(miopenStatus_t stat) {
  std::string msg(" Miopen error, ");
  return msg + platform::dynload::miopenGetErrorString(stat) + " ";
}

/***** ROCBLAS ERROR *****/
inline bool is_error(rocblas_status stat) {
  return stat != rocblas_status_success;
}

inline const char* rocblasGetErrorString(rocblas_status stat) {
  switch (stat) {
    case rocblas_status_invalid_handle:
      return "rocblas_status_invalid_handle";
    case rocblas_status_memory_error:
      return "rocblas_status_memory_error";
    case rocblas_status_invalid_value:
      return "rocblas_status_invalid_value";
    case rocblas_status_not_implemented:
      return "rocblas_status_not_implemented";
    case rocblas_status_invalid_pointer:
      return "rocblas_status_invalid_pointer";
    case rocblas_status_invalid_size:
      return "rocblas_status_invalid_size";
    case rocblas_status_internal_error:
      return "rocblas_status_internal_error";
    default:
      return "Unknown cublas status";
  }
}

inline std::string build_rocm_error_msg(rocblas_status stat) {
  std::string msg(" Rocblas error, ");
  return msg + rocblasGetErrorString(stat) + " ";
}

/****** RCCL ERROR ******/
#if !defined(__APPLE__) && defined(PADDLE_WITH_RCCL)
inline bool is_error(ncclResult_t nccl_result) {
  return nccl_result != ncclSuccess;
}

inline std::string build_rocm_error_msg(ncclResult_t nccl_result) {
  std::string msg(" Rccl error, ");
  return msg + platform::dynload::ncclGetErrorString(nccl_result) + " ";
}
#endif  // not(__APPLE__) and PADDLE_WITH_NCCL

namespace details {

template <typename T>
struct CudaStatusType {};

#define DEFINE_CUDA_STATUS_TYPE(type, success_value) \
  template <>                                        \
  struct CudaStatusType<type> {                      \
    using Type = type;                               \
    static constexpr Type kSuccess = success_value;  \
  }

DEFINE_CUDA_STATUS_TYPE(hipError_t, hipSuccess);
DEFINE_CUDA_STATUS_TYPE(hiprandStatus_t, HIPRAND_STATUS_SUCCESS);
DEFINE_CUDA_STATUS_TYPE(miopenStatus_t, miopenStatusSuccess);
DEFINE_CUDA_STATUS_TYPE(rocblas_status, rocblas_status_success);

#if !defined(__APPLE__) && defined(PADDLE_WITH_RCCL)
DEFINE_CUDA_STATUS_TYPE(ncclResult_t, ncclSuccess);
#endif

}  // namespace details

#define PADDLE_ENFORCE_CUDA_SUCCESS(COND)                      \
  do {                                                         \
    auto __cond__ = (COND);                                    \
    using __CUDA_STATUS_TYPE__ = decltype(__cond__);           \
    constexpr auto __success_type__ =                          \
        ::paddle::platform::details::CudaStatusType<           \
            __CUDA_STATUS_TYPE__>::kSuccess;                   \
    if (UNLIKELY(__cond__ != __success_type__)) {              \
      auto __summary__ = ::paddle::platform::errors::External( \
          ::paddle::platform::build_rocm_error_msg(__cond__)); \
      __THROW_ERROR_INTERNAL__(__summary__);                   \
    }                                                          \
  } while (0)

inline void retry_sleep(unsigned millisecond) {
#ifdef _WIN32
  Sleep(millisecond);
#else
  sleep(millisecond);
#endif
}

#define PADDLE_RETRY_CUDA_SUCCESS(COND)                                 \
  do {                                                                  \
    auto __cond__ = (COND);                                             \
    int retry_count = 1;                                                \
    using __CUDA_STATUS_TYPE__ = decltype(__cond__);                    \
    constexpr auto __success_type__ =                                   \
        ::paddle::platform::details::CudaStatusType<                    \
            __CUDA_STATUS_TYPE__>::kSuccess;                            \
    while (UNLIKELY(__cond__ != __success_type__) && retry_count < 5) { \
      retry_sleep(FLAGS_gpu_allocator_retry_time);                      \
      __cond__ = (COND);                                                \
      ++retry_count;                                                    \
    }                                                                   \
    if (UNLIKELY(__cond__ != __success_type__)) {                       \
      auto __summary__ = ::paddle::platform::errors::External(          \
          ::paddle::platform::build_rocm_error_msg(__cond__));          \
      __THROW_ERROR_INTERNAL__(__summary__);                            \
    }                                                                   \
  } while (0)

#undef DEFINE_CUDA_STATUS_TYPE
#endif  // PADDLE_WITH_HIP

1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223
#ifdef PADDLE_WITH_ASCEND_CL
namespace details {
template <typename T>
struct NPUStatusType {};

#define DEFINE_NPU_STATUS_TYPE(type, success_value) \
  template <>                                       \
  struct NPUStatusType<type> {                      \
    using Type = type;                              \
    static constexpr Type kSuccess = success_value; \
  }

DEFINE_NPU_STATUS_TYPE(aclError, ACL_ERROR_NONE);
1224
DEFINE_NPU_STATUS_TYPE(HcclResult, HCCL_SUCCESS);
1225 1226 1227 1228 1229 1230 1231 1232
}  // namespace details

inline std::string build_npu_error_msg(aclError stat) {
  std::ostringstream sout;
  sout << " ACL error, the error code is : " << stat << ". ";
  return sout.str();
}

1233 1234 1235 1236 1237 1238
inline std::string build_npu_error_msg(HcclResult stat) {
  std::ostringstream sout;
  sout << " HCCL error, the error code is : " << stat << ". ";
  return sout.str();
}

1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253
#define PADDLE_ENFORCE_NPU_SUCCESS(COND)                       \
  do {                                                         \
    auto __cond__ = (COND);                                    \
    using __NPU_STATUS_TYPE__ = decltype(__cond__);            \
    constexpr auto __success_type__ =                          \
        ::paddle::platform::details::NPUStatusType<            \
            __NPU_STATUS_TYPE__>::kSuccess;                    \
    if (UNLIKELY(__cond__ != __success_type__)) {              \
      auto __summary__ = ::paddle::platform::errors::External( \
          ::paddle::platform::build_npu_error_msg(__cond__));  \
      __THROW_ERROR_INTERNAL__(__summary__);                   \
    }                                                          \
  } while (0)
#endif  // PADDLE_WITH_ASCEND_CL

1254 1255
}  // namespace platform
}  // namespace paddle