checkpoint.py 11.7 KB
Newer Older
1
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import os
import collections
19
import functools
20
from ..framework import Variable, default_main_program, in_dygraph_mode, dygraph_only, Parameter, ParamBase, _varbase_creator, _dygraph_tracer
21
import pickle
22
import six
23 24
from . import learning_rate_scheduler
import warnings
H
hong 已提交
25
from .. import core
26
from .base import guard
27
from paddle.fluid.dygraph.jit import SaveLoadConfig, deprecate_save_load_configs
28
from paddle.fluid.dygraph.io import _construct_program_holders, _construct_params_and_buffers, EXTRA_VAR_INFO_FILENAME
29

H
hong 已提交
30 31 32 33
__all__ = [
    'save_dygraph',
    'load_dygraph',
]
34 35


36 37 38 39 40 41 42 43 44
# NOTE(chenweihang): deprecate load_dygraph's argument keep_name_table,
# ensure compatibility when user still use keep_name_table argument
def deprecate_keep_name_table(func):
    @functools.wraps(func)
    def wrapper(*args, **kwargs):
        def __warn_and_build_configs__(keep_name_table):
            warnings.warn(
                "The argument `keep_name_table` has deprecated, please use `SaveLoadConfig.keep_name_table`.",
                DeprecationWarning)
45 46 47
            config = SaveLoadConfig()
            config.keep_name_table = keep_name_table
            return config
48 49 50 51 52 53 54

        # deal with arg `keep_name_table`
        if len(args) > 1 and isinstance(args[1], bool):
            args = list(args)
            args[1] = __warn_and_build_configs__(args[1])
        # deal with kwargs
        elif 'keep_name_table' in kwargs:
55
            kwargs['config'] = __warn_and_build_configs__(kwargs[
56 57 58 59 60 61 62 63 64 65 66
                'keep_name_table'])
            kwargs.pop('keep_name_table')
        else:
            # do nothing
            pass

        return func(*args, **kwargs)

    return wrapper


H
hong 已提交
67 68 69
@dygraph_only
def save_dygraph(state_dict, model_path):
    '''
70 71
    :api_attr: imperative

H
hong 已提交
72 73 74 75
    Save Layer's state_dict to disk. This will generate a file with suffix ".pdparams"
    
    The state_dict is get from Layers.state_dict function
    
76
    Args:
H
hong 已提交
77 78
        state_dict(dict) : The state dict to be saved.
        model_path(str) : the file prefix to save the state_dict. The format is "dirname/file_prefix". If file_prefix is empty str. A exception will be raised
79 80

    Returns:
L
lujun 已提交
81
        None
82 83

    Examples:
H
hong 已提交
84 85 86 87 88
        .. code-block:: python

            import paddle.fluid as fluid

            with fluid.dygraph.guard():
89
                emb = fluid.dygraph.Embedding([10, 10])
H
hong 已提交
90 91 92 93

                state_dict = emb.state_dict()
                fluid.save_dygraph( state_dict, "paddle_dy")

94 95
                adam = fluid.optimizer.Adam( learning_rate = fluid.layers.noam_decay( 100, 10000),
                                             parameter_list = emb.parameters() )
H
hong 已提交
96 97 98 99 100 101 102

                state_dict = adam.state_dict()
                fluid.save_dygraph( state_dict, "paddle_dy")

    '''

    base_name = os.path.basename(model_path)
103
    assert base_name != "", "The input model_path MUST be format of dirname/filename [dirname\\filename in Windows system], but received filename is empty string."
H
hong 已提交
104 105 106 107

    suffix = ".pdparams"
    assert len(state_dict) > 0, "state_dict is empty, no need to save"

108
    param_num = 0
H
hong 已提交
109
    for k, v in state_dict.items():
110 111 112 113 114
        if isinstance(v, ParamBase):
            param_num += 1

    if param_num == 0:
        suffix = ".pdopt"
H
hong 已提交
115

H
hong 已提交
116 117 118 119 120
    model_dict = {}
    name_table = {}
    for k, v in state_dict.items():
        if isinstance(v, (Variable, core.VarBase)):
            model_dict[k] = v.numpy()
121
            name_table[k] = v.name
H
hong 已提交
122 123 124 125
        else:
            model_dict[k] = v
    model_dict["StructuredToParameterName@@"] = name_table

126 127 128 129 130 131
    file_name = model_path + suffix
    dir_name = os.path.dirname(file_name)
    if dir_name and not os.path.exists(dir_name):
        os.makedirs(dir_name)

    with open(file_name, 'wb') as f:
132
        pickle.dump(model_dict, f, protocol=2)
H
hong 已提交
133 134


135 136
# TODO(qingqing01): remove dygraph_only to support loading static model.
# maybe need to unify the loading interface after 2.0 API is ready.
137
# @dygraph_only
138
@deprecate_save_load_configs
139
@deprecate_keep_name_table
140
def load_dygraph(model_path, config=None):
H
hong 已提交
141
    '''
142 143
    :api_attr: imperative
    
144 145 146 147 148 149 150
    Load parameter state dict from disk.

    .. note::
        Due to some historical reasons, if you load ``state_dict`` from the saved 
        result of `paddle.io.save_inference_model`, the structured variable name 
        will cannot be restored. You need to set the argument `use_structured_name=False` 
        when using `Layer.set_state_dict` later.
H
hong 已提交
151 152

    Args:
153 154
        model_path(str) : The file prefix store the state_dict. 
            (The path should Not contain suffix '.pdparams') 
155
        config (SaveLoadConfig, optional): :ref:`api_imperative_jit_saveLoadConfig`
156 157 158
            object that specifies additional configuration options, these options 
            are for compatibility with ``jit.save/io.save_inference_model`` formats. 
            Default None.
H
hong 已提交
159 160 161

    Returns:
        state_dict(dict) : the dict store the state_dict
L
lujun 已提交
162

H
hong 已提交
163
    Examples:
164
        .. code-block:: python
L
lujun 已提交
165

166
            import paddle
H
hong 已提交
167
            
168
            paddle.disable_static()
H
hong 已提交
169

170
            emb = paddle.nn.Embedding([10, 10])
H
hong 已提交
171

172 173
            state_dict = emb.state_dict()
            paddle.save(state_dict, "paddle_dy")
H
hong 已提交
174

175 176 177 178 179 180 181
            scheduler = paddle.optimizer.lr_scheduler.NoamLR(
                d_model=0.01, warmup_steps=100, verbose=True)
            adam = paddle.optimizer.Adam(
                learning_rate=scheduler,
                parameters=emb.parameters())
            state_dict = adam.state_dict()
            paddle.save(state_dict, "paddle_dy")
H
hong 已提交
182

183
            para_state_dict, opti_state_dict = paddle.load("paddle_dy")
H
hong 已提交
184

185 186
    '''
    # deal with argument `model_path`
187 188 189 190 191 192
    model_prefix = model_path
    if model_prefix.endswith(".pdparams"):
        model_prefix = model_prefix[:-9]
    elif model_prefix.endswith(".pdopt"):
        model_prefix = model_prefix[:-6]

193
    para_dict = None
H
hong 已提交
194
    opti_dict = None
195
    params_file_path = model_prefix + ".pdparams"
196
    opti_file_path = model_prefix + ".pdopt"
197

198 199 200
    # deal with argument `config`
    if config is None:
        config = SaveLoadConfig()
201

202
    if os.path.exists(params_file_path) or os.path.exists(opti_file_path):
203
        # Load state dict by `save_dygraph` save format
M
MRXLT 已提交
204
        para_dict = {}
205 206 207 208 209
        if os.path.exists(params_file_path):
            with open(params_file_path, 'rb') as f:
                para_dict = pickle.load(f) if six.PY2 else pickle.load(
                    f, encoding='latin1')

210
        if not config.keep_name_table and "StructuredToParameterName@@" in para_dict:
211 212 213 214 215 216
            del para_dict["StructuredToParameterName@@"]

        if os.path.exists(opti_file_path):
            with open(opti_file_path, 'rb') as f:
                opti_dict = pickle.load(f) if six.PY2 else pickle.load(
                    f, encoding='latin1')
217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
    else:
        # check model path
        if not os.path.isdir(model_prefix):
            raise ValueError("Model saved directory '%s' is not exists." %
                             model_prefix)

        # check whether model file exists
        if config.model_filename is None:
            model_filename = '__model__'
        else:
            model_filename = config.model_filename
        model_file_path = os.path.join(model_path, model_filename)

        if os.path.exists(model_file_path):
            # Load state dict by `jit.save/io.save_inference_model` save format
            # NOTE(chenweihang): [ Compatibility of save_inference_model save format ]
            # The model saved by `save_inference_model` does not completely correspond to 
            # the information required by the `state_dict` under the dygraph. 
            # `save_inference_model` not save structured name, we need to remind 
            # the user to configure the `use_structured_name` argument when `set_state_dict`
            # NOTE(chenweihang): `jit.save` doesn't save optimizer state 

            # 1. load program desc & construct _ProgramHolder
            programs = _construct_program_holders(model_path,
                                                  config.model_filename)

            # 2. load layer parameters & buffers
            # NOTE: using fluid.dygraph.guard() here will cause import error in py2
            with guard():
                persistable_var_dict = _construct_params_and_buffers(
                    model_prefix,
                    programs,
                    config.separate_params,
                    config.params_filename,
                    append_suffix=False)

                # 3. construct state_dict
                para_dict = dict()
                for var_name in persistable_var_dict:
                    para_dict[var_name] = persistable_var_dict[var_name].numpy()

                # if __variables.info__ exists, we can recover structured_name
                var_info_path = os.path.join(model_prefix,
                                             EXTRA_VAR_INFO_FILENAME)
                if os.path.exists(var_info_path):
                    with open(var_info_path, 'rb') as f:
                        extra_var_info = pickle.load(f)
                    structured_para_dict = dict()
                    for var_name in para_dict:
                        structured_name = extra_var_info[var_name].get(
                            'structured_name', None)
                        assert structured_name is not None, "Cannot find saved variable (%s)'s structured name in saved model." % var_name
                        structured_para_dict[structured_name] = para_dict[
                            var_name]
                    para_dict = structured_para_dict
        else:
            # load state dict by `io.save_params/persistables` save format
            # TODO(chenweihang): [ Now only supports loading parameters seperately ]
            # If users save all parameters as one file, the [ variable.name -> variable ]
            # mapping info will lost, so users need to give variable list, but users build 
            # variable list in dygraph mode is difficult, we recommend users to use
            # paddle.io.load_program_state in this case

            # Try to load all the files in the directory in VarBase format, 
            # the file name is used as the name of VarBase
            load_var_list = []

            # 1. load file names
            var_name_list = []
            for root, _, files in os.walk(model_path):
                for filename in files:
                    file_path = os.path.join(root, filename)
                    tmp_var_name = os.path.relpath(file_path, model_path)
                    var_name = tmp_var_name.replace("\\", "/")
                    var_name_list.append(var_name)

            # 2. create and load VarBase
            with guard():
                for name in var_name_list:
                    new_var = _varbase_creator(name=name, persistable=True)
                    _dygraph_tracer().trace_op(
                        type='load',
                        inputs={},
                        outputs={'Out': new_var},
                        attrs={'file_path': os.path.join(model_path, name)})
                    load_var_list.append(new_var)

            # 3. construct state_dict
            para_dict = dict()
            for var in load_var_list:
                para_dict[var.name] = var.numpy()
H
hong 已提交
308 309

    return para_dict, opti_dict