ascend_group.py 5.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import paddle.fluid as fluid
from paddle.fluid import unique_name
import paddle.fluid.core as core
import paddle
from paddle.fluid.layer_helper import LayerHelper
from paddle.distributed import fleet
22
from paddle.distributed.fleet.meta_optimizers.ascend import ascend_optimizer
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
from collections import namedtuple

Block = namedtuple('Block', ['program'])
Loss = namedtuple('Loss', ['block'])

paddle.enable_static()

OpRole = core.op_proto_and_checker_maker.OpRole
OP_ROLE_KEY = core.op_proto_and_checker_maker.kOpRoleAttrName()
OP_ROLE_VAR_KEY = core.op_proto_and_checker_maker.kOpRoleVarAttrName()

role = fleet.PaddleCloudRoleMaker(is_collective=True)
fleet.init(role)


def init_communicator(startup_program, main_program, current_endpoint,
                      endpoints, ring_id):
    nranks = len(endpoints)
    other_endpoints = endpoints[:]
    other_endpoints.remove(current_endpoint)
    group_rank = endpoints.index(current_endpoint)
    assert group_rank >= 0

    block = startup_program.global_block()
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
    nccl_id_var = block.create_var(name=unique_name.generate('nccl_id'),
                                   persistable=True,
                                   type=core.VarDesc.VarType.RAW)
    block.append_op(type='c_gen_nccl_id',
                    inputs={},
                    outputs={'Out': nccl_id_var},
                    attrs={
                        'rank': group_rank,
                        'endpoint': current_endpoint,
                        'other_endpoints': other_endpoints,
                        OP_ROLE_KEY: OpRole.Forward,
                    })
    block.append_op(type='c_comm_init',
                    inputs={'X': nccl_id_var},
                    outputs={},
                    attrs={
                        'nranks': nranks,
                        'rank': group_rank,
                        'ring_id': ring_id,
                        OP_ROLE_KEY: OpRole.Forward,
                    })
68

69 70
    # add input op for test
    fill_var_name = "tensor@Filled"
71 72 73 74 75 76 77 78 79 80 81 82 83
    fill_var = block.create_var(name=fill_var_name,
                                shape=[10, 10],
                                dtype='float32',
                                persistable=False,
                                stop_gradient=True)
    block.append_op(type="fill_constant",
                    outputs={"Out": fill_var_name},
                    attrs={
                        "shape": [10, 10],
                        "dtype": fill_var.dtype,
                        "value": 1.0,
                        "place_type": 1
                    })
84

85 86 87 88
    with fluid.program_guard(main_program):
        op_type = "c_allreduce_sum"
        data = fluid.layers.fill_constant(shape=[1], dtype='float32', value=2.5)
        helper = LayerHelper(op_type, **locals())
89 90 91 92 93 94 95
        helper.append_op(type=op_type,
                         inputs={'X': [data]},
                         outputs={'Out': [data]},
                         attrs={
                             'ring_id': ring_id,
                             'use_calc_stream': True
                         })
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134

    print("startup program:", startup_program)
    print("main program:", main_program)


def train(world_endpoints, world_device_ids, local_device_ids, local_rank):
    startup_programs = []
    main_programs = []

    #trainer_endpoints=["127.0.0.1:6071","127.0.0.1:6072","127.0.0.1:6073","127.0.0.1:6074"]
    trainer_endpoints = world_endpoints
    groups = [[], [], []]
    groups[0] = [trainer_endpoints[0], trainer_endpoints[1]]
    groups[1] = [trainer_endpoints[2], trainer_endpoints[3]]
    groups[2] = [trainer_endpoints[0], trainer_endpoints[2]]
    print("groups:", groups)

    for i in range(len(trainer_endpoints)):
        startup_programs.append(fluid.Program())
        main_programs.append(fluid.Program())

    for idx, group in enumerate(groups):
        for te in group:
            te_idx = trainer_endpoints.index(te)
            startup_program = startup_programs[te_idx]
            main_program = main_programs[te_idx]
            init_communicator(startup_program, main_program, te, group, idx)

    print(len(startup_programs))
    print(startup_programs[local_rank])
    print(main_programs[local_rank])

    print("local rank: ", local_rank)
    print("local startup program: ", startup_programs[local_rank])

    startup_program = startup_programs[local_rank]
    main_program = main_programs[local_rank]
    loss = Loss(Block(main_program))
    optimizer = ascend_optimizer.AscendOptimizer(None, fetch_list=[])
135 136 137 138
    optimizer.minimize(loss,
                       startup_program,
                       auto_dp=True,
                       rank_table_file=os.getenv("RANK_TABLE_FILE", None))
139 140

    exe = paddle.static.Executor(paddle.CPUPlace())
141
    exe.run(startup_program)
142 143 144 145 146 147 148 149 150 151 152 153 154 155
    exe.run(main_program)


worker_endpoints = fleet.worker_endpoints()
world_device_ids = fleet.world_device_ids()
local_device_ids = fleet.local_device_ids()
local_rank = int(fleet.local_rank())

print("worker_endpoints:", worker_endpoints)
print("world_device_ids:", world_device_ids)
print("local_device_ids:", local_device_ids)
print("local_rank:", local_rank)

train(worker_endpoints, world_device_ids, local_device_ids, local_rank)