mode_op.cu 9.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <thrust/device_vector.h>
#include <thrust/execution_policy.h>
#include <thrust/functional.h>
#include <thrust/inner_product.h>
#include <thrust/iterator/constant_iterator.h>
#include <thrust/sequence.h>
#include <thrust/sort.h>

#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/mode_op.h"
#include "paddle/fluid/operators/top_k_function_cuda.h"

namespace paddle {
namespace operators {

int ComputeBlockSize(int col) {
  if (col > 512)
    return 1024;
  else if (col > 256 && col <= 512)
    return 512;
  else if (col > 128 && col <= 256)
    return 256;
  else if (col > 64 && col <= 128)
    return 128;
  else
    return 64;
}

template <typename T>
void getModebySort(const platform::CUDADeviceContext& ctx,
                   const framework::Tensor* input_tensor,
                   const int64_t num_cols, const int64_t num_rows,
                   T* out_tensor, int64_t* indices_tensor) {
  framework::Tensor input_tmp;
  framework::TensorCopy(*input_tensor, ctx.GetPlace(), &input_tmp);
  T* input_tmp_data = input_tmp.mutable_data<T>(ctx.GetPlace());
52
  input_tmp.Resize(phi::make_ddim({num_rows, num_cols}));
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
  thrust::device_ptr<T> out_tensor_ptr(out_tensor);
  thrust::device_ptr<int64_t> indices_tensor_ptr(indices_tensor);

  for (int64_t i = 0; i < num_rows; ++i) {
    T* begin = input_tmp_data + num_cols * i;
    T* end = input_tmp_data + num_cols * (i + 1);
    thrust::device_vector<int64_t> indices_data(num_cols);
    thrust::sequence(thrust::device, indices_data.begin(),
                     indices_data.begin() + num_cols);
    thrust::sort_by_key(thrust::device, begin, end, indices_data.begin());
    int unique = 1 + thrust::inner_product(thrust::device, begin, end - 1,
                                           begin + 1, 0, thrust::plus<int>(),
                                           thrust::not_equal_to<T>());
    thrust::device_vector<T> keys_data(unique);
    thrust::device_vector<int64_t> cnts_data(unique);
    thrust::reduce_by_key(thrust::device, begin, end,
                          thrust::constant_iterator<int>(1), keys_data.begin(),
                          cnts_data.begin());
    auto it = thrust::max_element(thrust::device, cnts_data.begin(),
                                  cnts_data.begin() + unique);
    T mode = keys_data[it - cnts_data.begin()];
    int64_t counts = cnts_data[it - cnts_data.begin()];
    auto pos = thrust::find(thrust::device, begin, end, mode);
    int64_t index = indices_data[pos - begin + counts - 1];
    out_tensor_ptr[i] = static_cast<T>(mode);
    indices_tensor_ptr[i] = static_cast<int64_t>(index);
  }
}

template <typename DeviceContext, typename T>
class ModeOpCUDAKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE_EQ(
        platform::is_gpu_place(ctx.GetPlace()), true,
        platform::errors::InvalidArgument(
            "It must use CUDAPlace, you must check your device set."));
    auto* input = ctx.Input<framework::Tensor>("X");
    auto* output = ctx.Output<framework::Tensor>("Out");
    auto* indices = ctx.Output<framework::Tensor>("Indices");
    int axis = static_cast<int>(ctx.Attr<int>("axis"));
    bool keepdim = static_cast<bool>(ctx.Attr<bool>("keepdim"));

    // get the input dims
    const auto& in_dims = input->dims();
    // calcluate the real axis
    if (axis < 0) axis += in_dims.size();

    auto out_dims = output->dims();

    const T* input_data = input->data<T>();
    T* output_data = output->mutable_data<T>(ctx.GetPlace());
    int64_t* indices_data = indices->mutable_data<int64_t>(ctx.GetPlace());

    if (axis == in_dims.size() - 1) {
108
      const int64_t& input_height =
109
          phi::product(phi::slice_ddim(in_dims, 0, in_dims.size() - 1));
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
      const int64_t& input_width = in_dims[in_dims.size() - 1];
      const auto& dev_ctx = ctx.cuda_device_context();
      getModebySort<T>(dev_ctx, input, input_width, input_height, output_data,
                       indices_data);
    } else {
      std::vector<int> trans_axis;
      for (int i = 0; i < axis; i++) {
        trans_axis.emplace_back(i);
      }
      trans_axis.emplace_back(in_dims.size() - 1);
      for (int i = axis + 1; i < in_dims.size() - 1; i++) {
        trans_axis.emplace_back(i);
      }
      trans_axis.emplace_back(axis);

      if (!keepdim) {
        std::vector<int> tmp_out_shape;
        for (int i = 0; i < axis; i++) {
          tmp_out_shape.emplace_back(in_dims[i]);
        }
        tmp_out_shape.emplace_back(1);
        for (int i = axis + 1; i < in_dims.size(); i++) {
          tmp_out_shape.emplace_back(in_dims[i]);
        }
134
        framework::DDim tmp_out_dim = phi::make_ddim(tmp_out_shape);
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
        output->Resize(tmp_out_dim);
        indices->Resize(tmp_out_dim);
      }

      framework::DDim trans_shape(in_dims);
      framework::DDim trans_out_shape(in_dims);
      for (int i = 0; i < trans_axis.size(); i++) {
        trans_shape[i] = in_dims[trans_axis[i]];
        trans_out_shape[i] = in_dims[trans_axis[i]];
      }
      trans_out_shape[in_dims.size() - 1] = 1;

      // second step, tranpose the input
      framework::Tensor trans_input;
      trans_input.mutable_data<T>(trans_shape, ctx.GetPlace());
      int ndims = trans_axis.size();
      const auto& dev_ctx = ctx.cuda_device_context();
      TransCompute<platform::CUDADeviceContext, T>(ndims, dev_ctx, *input,
                                                   &trans_input, trans_axis);
      framework::Tensor trans_ind;
      int64_t* trans_ind_data =
          trans_ind.mutable_data<int64_t>(trans_out_shape, ctx.GetPlace());
      framework::Tensor trans_out;
      T* trans_out_data =
          trans_out.mutable_data<T>(trans_out_shape, ctx.GetPlace());

161 162
      const int64_t input_height =
          phi::product(phi::slice_ddim(trans_shape, 0, trans_shape.size() - 1));
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
      const int64_t input_width = trans_shape[trans_shape.size() - 1];
      getModebySort<T>(dev_ctx, &trans_input, input_width, input_height,
                       trans_out_data, trans_ind_data);
      // last step, tranpose back the indices and output
      TransCompute<platform::CUDADeviceContext, int64_t>(
          ndims, dev_ctx, trans_ind, indices, trans_axis);
      TransCompute<platform::CUDADeviceContext, T>(ndims, dev_ctx, trans_out,
                                                   output, trans_axis);
      if (!keepdim) {
        output->Resize(out_dims);
        indices->Resize(out_dims);
      }
    }
  }
};

template <typename DeviceContext, typename T>
class ModeOpGradCUDAKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    PADDLE_ENFORCE_EQ(
        platform::is_gpu_place(context.GetPlace()), true,
        platform::errors::InvalidArgument(
            "It must use CUDAPlace, you must check your device set."));
    auto* x = context.Input<framework::Tensor>("X");
    auto* out_grad =
        context.Input<framework::Tensor>(framework::GradVarName("Out"));
    auto* indices = context.Input<framework::Tensor>("Indices");
    auto* x_grad =
        context.Output<framework::Tensor>(framework::GradVarName("X"));
    int axis = context.Attr<int>("axis");

    const auto& in_dims = x->dims();
    auto out_dims = indices->dims();

    if (axis < 0) axis += in_dims.size();
    // allocate the cuda memory for the x_grad
    T* x_grad_data = x_grad->mutable_data<T>(context.GetPlace());
    const T* out_grad_data = out_grad->data<T>();
    const int64_t* indices_data = indices->data<int64_t>();

    int pre, n, post;
    GetDims(in_dims, axis, &pre, &n, &post);

    // calcluate the block and grid num
    auto& dev_ctx = context.cuda_device_context();
    int block_size = ComputeBlockSize(post);
    int max_threads = dev_ctx.GetMaxPhysicalThreadCount();
    const int max_blocks = std::max(((max_threads - 1) / block_size + 1), 1);
    int grid_size = std::min(max_blocks, pre);
    AssignGradWithAxis<T><<<grid_size, block_size, 64 * 4, dev_ctx.stream()>>>(
        out_grad_data, indices_data, x_grad_data, pre, post, n, 1);
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP_CUDA_KERNEL(
    mode, ops::ModeOpCUDAKernel<paddle::platform::CUDADeviceContext, float>,
    ops::ModeOpCUDAKernel<paddle::platform::CUDADeviceContext, double>,
    ops::ModeOpCUDAKernel<paddle::platform::CUDADeviceContext, int>,
    ops::ModeOpCUDAKernel<paddle::platform::CUDADeviceContext, int64_t>);
REGISTER_OP_CUDA_KERNEL(
    mode_grad,
    ops::ModeOpGradCUDAKernel<paddle::platform::CUDADeviceContext, float>,
    ops::ModeOpGradCUDAKernel<paddle::platform::CUDADeviceContext, double>,
    ops::ModeOpGradCUDAKernel<paddle::platform::CUDADeviceContext, int>,
    ops::ModeOpGradCUDAKernel<paddle::platform::CUDADeviceContext, int64_t>);