box_coder_op.cc 6.1 KB
Newer Older
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
G
gaoyuan 已提交
2 3 4 5 6 7 8 9 10 11
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

B
baiyf 已提交
12
#include "paddle/fluid/operators/detection/box_coder_op.h"
G
gaoyuan 已提交
13 14 15 16 17 18 19 20 21 22 23 24 25 26

namespace paddle {
namespace operators {

class BoxCoderOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(framework::InferShapeContext *ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("PriorBox"),
                   "Input(PriorBox) of BoxCoderOp should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("PriorBoxVar"),
                   "Input(PriorBoxVar) of BoxCoderOp should not be null.");
G
gaoyuan 已提交
27
    PADDLE_ENFORCE(ctx->HasInput("TargetBox"),
G
gaoyuan 已提交
28
                   "Input(TargetBox) of BoxCoderOp should not be null.");
G
gaoyuan 已提交
29 30
    PADDLE_ENFORCE(ctx->HasOutput("OutputBox"),
                   "Output(OutputBox) of BoxCoderOp should not be null.");
G
gaoyuan 已提交
31 32 33 34 35

    auto prior_box_dims = ctx->GetInputDim("PriorBox");
    auto prior_box_var_dims = ctx->GetInputDim("PriorBoxVar");
    auto target_box_dims = ctx->GetInputDim("TargetBox");

G
gaoyuan 已提交
36 37 38 39
    PADDLE_ENFORCE_EQ(prior_box_dims.size(), 2,
                      "The rank of Input of PriorBoxVar must be 2");
    PADDLE_ENFORCE_EQ(prior_box_dims[1], 4, "The shape of PriorBox is [N, 4]");
    PADDLE_ENFORCE_EQ(prior_box_dims, prior_box_var_dims);
G
gaoyuan 已提交
40

Y
Yuan Gao 已提交
41 42 43 44 45 46 47 48 49 50 51 52
    auto code_type = GetBoxCodeType(ctx->Attrs().Get<std::string>("code_type"));
    if (code_type == BoxCodeType::kEncodeCenterSize) {
      PADDLE_ENFORCE_EQ(target_box_dims.size(), 2,
                        "The rank of Input of TargetBox must be 2");
      PADDLE_ENFORCE_EQ(target_box_dims[1], 4,
                        "The shape of TargetBox is [M, 4]");
    } else if (code_type == BoxCodeType::kDecodeCenterSize) {
      PADDLE_ENFORCE_EQ(target_box_dims.size(), 3,
                        "The rank of Input of TargetBox must be 3");
      PADDLE_ENFORCE_EQ(target_box_dims[1], prior_box_dims[0]);
      PADDLE_ENFORCE_EQ(target_box_dims[2], prior_box_dims[1]);
    }
G
gaoyuan 已提交
53

G
gaoyuan 已提交
54 55 56 57
    ctx->SetOutputDim(
        "OutputBox",
        framework::make_ddim({target_box_dims[0], prior_box_dims[0], 4}));
    ctx->ShareLoD("TargetBox", /*->*/ "OutputBox");
G
gaoyuan 已提交
58 59 60 61 62
  }
};

class BoxCoderOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
63
  void Make() override {
G
gaoyuan 已提交
64 65 66
    AddInput(
        "PriorBox",
        "(Tensor, default Tensor<float>) "
G
gaoyuan 已提交
67
        "Box list PriorBox is a 2-D Tensor with shape [M, 4] holds M boxes, "
G
gaoyuan 已提交
68 69 70 71 72 73 74
        "each box is represented as [xmin, ymin, xmax, ymax], "
        "[xmin, ymin] is the left top coordinate of the anchor box, "
        "if the input is image feature map, they are close to the origin "
        "of the coordinate system. [xmax, ymax] is the right bottom "
        "coordinate of the anchor box.");
    AddInput("PriorBoxVar",
             "(Tensor, default Tensor<float>) "
G
gaoyuan 已提交
75
             "PriorBoxVar is a 2-D Tensor with shape [M, 4] holds M group "
G
gaoyuan 已提交
76 77 78
             "of variance.");
    AddInput(
        "TargetBox",
Y
Yuan Gao 已提交
79 80 81 82 83 84 85 86 87 88
        "(LoDTensor or Tensor) This input can be a 2-D LoDTensor with shape "
        "[N, 4] when code_type is 'encode_center_size'. This input also can "
        "be a 3-D Tensor with shape [N, M, 4] when code_type is "
        "'decode_center_size'. [N, 4], each box is represented as "
        "[xmin, ymin, xmax, ymax], [xmin, ymin] is the left top coordinate "
        "of the box if the input is image feature map, they are close to "
        "the origin of the coordinate system. [xmax, ymax] is the right "
        "bottom coordinate of the box. This tensor can contain LoD "
        "information to represent a batch of inputs. One instance of this "
        "batch can contain different numbers of entities.");
G
gaoyuan 已提交
89 90 91 92 93
    AddAttr<std::string>("code_type",
                         "(string, default encode_center_size) "
                         "the code type used with the target box")
        .SetDefault("encode_center_size")
        .InEnum({"encode_center_size", "decode_center_size"});
94 95 96 97
    AddAttr<bool>("box_normalized",
                  "(bool, default true) "
                  "whether treat the priorbox as a noramlized box")
        .SetDefault(true);
Y
Yuan Gao 已提交
98 99 100 101 102 103 104
    AddOutput("OutputBox",
              "(LoDTensor or Tensor) "
              "When code_type is 'encode_center_size', the output tensor of "
              "box_coder_op with shape [N, M, 4] representing the result of N "
              "target boxes encoded with M Prior boxes and variances. When "
              "code_type is 'decode_center_size', N represents the batch size "
              "and M represents the number of deocded boxes.");
G
gaoyuan 已提交
105 106 107

    AddComment(R"DOC(
Bounding Box Coder Operator.
G
gaoyuan 已提交
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
Encode/Decode the target bounding box with the priorbox information.
The Encoding schema described below:
ox = (tx - px) / pw / pxv
oy = (ty - py) / ph / pyv
ow = log(abs(tw / pw)) / pwv 
oh = log(abs(th / ph)) / phv 
The Decoding schema described below:
ox = (pw * pxv * tx * + px) - tw / 2
oy = (ph * pyv * ty * + py) - th / 2
ow = exp(pwv * tw) * pw + tw / 2
oh = exp(phv * th) * ph + th / 2
where tx, ty, tw, th denote the target box's center coordinates, width and
height respectively. Similarly, px, py, pw, ph denote the priorbox's(anchor)
center coordinates, width and height. pxv, pyv, pwv, phv denote the variance
of the priorbox and ox, oy, ow, oh denote the encoded/decoded coordinates,
width and height.
G
gaoyuan 已提交
124 125 126 127 128 129 130 131
)DOC");
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
132 133
REGISTER_OPERATOR(box_coder, ops::BoxCoderOp, ops::BoxCoderOpMaker,
                  paddle::framework::EmptyGradOpMaker);
G
gaoyuan 已提交
134 135
REGISTER_OP_CPU_KERNEL(box_coder, ops::BoxCoderKernel<float>,
                       ops::BoxCoderKernel<double>);