proximal_adagrad_op.cc 4.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/proximal_adagrad_op.h"
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61

namespace paddle {
namespace operators {

class ProximalAdagradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(framework::InferShapeContext *ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("Param"),
                   "Input(Param) of ProximalAdagradOp should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("Moment"),
                   "Input(Moment) of ProximalAdagradOp should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("Grad"),
                   "Input(Grad) of ProximalAdagradOp should not be null.");
    PADDLE_ENFORCE(
        ctx->HasInput("LearningRate"),
        "Input(LearningRate) of ProximalAdagradOp should not be null.");

    PADDLE_ENFORCE(ctx->HasOutput("ParamOut"),
                   "Output(ParamOut) of ProximalAdagradOp should not be null.");
    PADDLE_ENFORCE(
        ctx->HasOutput("MomentOut"),
        "Output(MomentOut) of ProximalAdagradOp should not be null.");

    auto param_dim = ctx->GetInputDim("Param");
    PADDLE_ENFORCE_EQ(
        param_dim, ctx->GetInputDim("Grad"),
        "Param and Grad of ProximalAdagrad Op must have same dimension.");

    PADDLE_ENFORCE_EQ(
        param_dim, ctx->GetInputDim("Moment"),
        "Param and Moment of ProximalAdagrad Op must have same dimension.");

    auto lr_dim = ctx->GetInputDim("LearningRate");
    PADDLE_ENFORCE_EQ(framework::product(lr_dim), 1,
                      "Learning Rate should be a scalar.");

    ctx->SetOutputDim("ParamOut", param_dim);
    ctx->SetOutputDim("MomentOut", param_dim);
  }
};

class ProximalAdagradOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
62
  ProximalAdagradOpMaker(OpProto *proto, OpAttrChecker *op_checker)
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput("Param",
             "(Tensor, default Tensor<float>) "
             "Input parameter that has to be updated.");
    AddInput("Moment",
             "(Tensor, default Tensor<float>) "
             "Moment parameter that has to be updated.");
    AddInput("Grad",
             "(Tensor, default Tensor<float>) "
             "Input gradient of the parameter.");
    AddInput("LearningRate",
             "(Tensor, default Tensor<float>) "
             "The learning rate should be a tensor of size 1.");

    AddOutput("ParamOut", "(Tensor) Output updated parameter value.");
    AddOutput("MomentOut", "(Tensor) Output updated moment value.");

    AddAttr<float>("l1",
                   "(float, default 0.0) "
                   "L1 regularization strength.")
        .SetDefault(0.0f);
    AddAttr<float>("l2",
K
kexinzhao 已提交
85
                   "(float, default 0.0) "
86 87 88
                   "L2 regularization strength.")
        .SetDefault(0.0f);
    AddComment(R"DOC(
K
kexinzhao 已提交
89
Proximal Adagrad Optimizer.
90

K
kexinzhao 已提交
91
Optimizer that implements the proximal adagrad algorithm:
92

K
kexinzhao 已提交
93 94 95 96 97 98
$$
moment = moment + grad * grad \\
prox\_param = param - learning\_rate * grad * (1 / \sqrt{moment}) \\
param = sign(prox\_param) / (1 + learning\_rate * l2) *
        \max(|prox\_param| - learning\_rate * l1 , 0)
$$
99 100 101 102 103

The paper that proposed Proximal GD: 
(http://papers.nips.cc/paper/3793-efficient-learning-using-forward-backward-splitting.pdf)
Here, we use the adagrad learning rate as specified here: 
(http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf)
K
kexinzhao 已提交
104

105 106 107 108 109 110 111 112 113 114 115
)DOC");
  }
};
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP_WITHOUT_GRADIENT(proximal_adagrad, ops::ProximalAdagradOp,
                             ops::ProximalAdagradOpMaker);
REGISTER_OP_CPU_KERNEL(
    proximal_adagrad,
Q
QI JUN 已提交
116
    ops::ProximalAdagradOpKernel<paddle::platform::CPUDeviceContext, float>);