conv_shift_op.cu 6.8 KB
Newer Older
L
Luo Tao 已提交
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
M
Markus Kliegl 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
M
Markus Kliegl 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
M
Markus Kliegl 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
M
Markus Kliegl 已提交
14

Y
Yi Wang 已提交
15 16 17
#include "paddle/fluid/operators/conv_shift_op.h"
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/platform/cuda_helper.h"
M
Markus Kliegl 已提交
18 19 20 21 22 23 24 25

namespace paddle {
namespace operators {

using framework::Tensor;

namespace {

M
Markus Kliegl 已提交
26
inline int DivUp(int x, int y) { return (x + y - 1) / y; }
M
Markus Kliegl 已提交
27 28 29 30 31 32 33 34 35 36

// Some notes on the design:
//
// Each thread is responsible for computing a single output out[k, i].
// Thread blocks are based on tiles of x with height 1 in the batch dimension.
//
// This design is based on the typical use case where the filter
// y is fairly small. For large y, it would probably be more efficient
// to also tile across y.
template <typename T>
M
Markus Kliegl 已提交
37 38 39
__global__ void ConvShiftForward(const T *x, const T *y, int x_width,
                                 int y_width, int y_half_width, int batch_size,
                                 T *out) {
M
Markus Kliegl 已提交
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
  extern __shared__ T mem[];

  int tx = threadIdx.x;
  int i = blockIdx.x * blockDim.x + tx;  // global x index
  int k = blockIdx.y;                    // batch index

  // Check if we are in a boundary block with fewer x's to process than
  // blockDim.x.
  int num_x =
      (blockIdx.x == gridDim.x - 1) ? (x_width % blockDim.x) : blockDim.x;

  T *sx = mem;
  T *sx_pad = &mem[num_x];
  T *sy = &mem[blockDim.x + y_width];

  // Collaboratively load y[k, :] and length-y padding of x into shared memory.
  int pad_start = blockIdx.x * blockDim.x + num_x + x_width - y_half_width;
  for (int j = tx; j < y_width; j += blockDim.x) {
    sy[j] = y[k * y_width + j];
    sx_pad[j] = x[k * x_width + (pad_start + j) % x_width];
  }

  // Load a cyclically shifted slice of x into shared memory.
  if (tx < num_x) {
    int load_i = (i - y_half_width + x_width) % x_width;
    sx[tx] = x[k * x_width + load_i];
  }
  __syncthreads();

69 70 71 72 73 74 75 76 77
  if (tx < num_x) {
    // Compute dot product of sx[tx:tx + y_width] and sy.
    T sum = 0;
    for (int j = 0; j < y_width; ++j) {
      sum += sx[tx + j] * sy[j];
    }

    // Save to out[k, i].
    out[k * x_width + i] = sum;
M
Markus Kliegl 已提交
78 79 80 81 82
  }
}

// Compute x gradient - initial naive implementation with atomic add.
template <typename T>
M
Markus Kliegl 已提交
83 84 85
__global__ void ConvShiftGradX(const T *dout, const T *y, int x_width,
                               int y_width, int y_half_width, int batch_size,
                               T *dx) {
M
Markus Kliegl 已提交
86 87 88 89 90 91 92 93 94 95 96 97 98
  int i = blockIdx.x * blockDim.x + threadIdx.x;  // x index
  int j = blockIdx.y;                             // y index
  int k = blockIdx.z;                             // batch index

  if (i < x_width) {
    int index = (i + j - y_half_width + x_width) % x_width;
    atomicAdd(&dx[k * x_width + index],
              dout[k * x_width + i] * y[k * y_width + j]);
  }
}

// Compute y gradient - initial naive implementation with atomic add.
template <typename T>
M
Markus Kliegl 已提交
99 100
__global__ void ConvShiftDy(const T *x, const T *dout, int x_width, int y_width,
                            int y_half_width, int batch_size, T *dy) {
M
Markus Kliegl 已提交
101 102 103 104 105 106 107 108 109 110 111 112 113
  int i = blockIdx.x * blockDim.x + threadIdx.x;  // x index
  int j = blockIdx.y;                             // y index
  int k = blockIdx.z;                             // batch index

  if (i < x_width) {
    int index = (i + j - y_half_width + x_width) % x_width;
    atomicAdd(&dy[k * y_width + j],
              x[k * x_width + index] * dout[k * x_width + i]);
  }
}
}  // namespace

template <typename T>
Q
QI JUN 已提交
114 115
class ConvShiftKernel<platform::CUDADeviceContext, T>
    : public framework::OpKernel<T> {
M
Markus Kliegl 已提交
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
 public:
  void Compute(const framework::ExecutionContext &context) const override {
    const Tensor *X = context.Input<Tensor>("X");
    const Tensor *Y = context.Input<Tensor>("Y");
    Tensor *Out = context.Output<Tensor>("Out");
    const T *x_data = X->data<T>();
    const T *y_data = Y->data<T>();
    T *out_data = Out->mutable_data<T>(context.GetPlace());

    int batch_size = X->dims()[0];
    int x_width = X->dims()[1];
    int y_width = Y->dims()[1];
    int y_half_width = (y_width - 1) / 2;

    const int x_per_block = 256;
M
Markus Kliegl 已提交
131
    int num_x_blocks = DivUp(x_width, x_per_block);
M
Markus Kliegl 已提交
132 133 134 135
    int mem_per_block = (x_per_block + 2 * y_width) * sizeof(T);

    dim3 grid_dim(num_x_blocks, batch_size);

Q
QI JUN 已提交
136 137
    auto stream =
        context.template device_context<platform::CUDADeviceContext>().stream();
M
Markus Kliegl 已提交
138

M
Markus Kliegl 已提交
139
    ConvShiftForward<T><<<grid_dim, x_per_block, mem_per_block, stream>>>(
M
Markus Kliegl 已提交
140
        x_data, y_data, x_width, y_width, y_half_width, batch_size, out_data);
M
Markus Kliegl 已提交
141 142 143 144
  }
};

template <typename T>
Q
QI JUN 已提交
145
class ConvShiftGradKernel<platform::CUDADeviceContext, T>
M
Markus Kliegl 已提交
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
    : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &context) const override {
    const Tensor *X = context.Input<Tensor>("X");
    const Tensor *Y = context.Input<Tensor>("Y");
    const Tensor *dOut = context.Input<Tensor>(framework::GradVarName("Out"));
    const T *x_data = X->data<T>();
    const T *y_data = Y->data<T>();
    const T *dout_data = dOut->data<T>();

    Tensor *dX = context.Output<Tensor>(framework::GradVarName("X"));
    Tensor *dY = context.Output<Tensor>(framework::GradVarName("Y"));

    int batch_size = X->dims()[0];
    int x_width = X->dims()[1];
    int y_width = Y->dims()[1];
    int y_half_width = (y_width - 1) / 2;

Q
QI JUN 已提交
164 165 166
    auto &device_ctx =
        context.template device_context<platform::CUDADeviceContext>();
    math::SetConstant<platform::CUDADeviceContext, T> zero;
M
Markus Kliegl 已提交
167 168

    const int x_per_block = 256;
M
Markus Kliegl 已提交
169
    int num_x_blocks = DivUp(x_width, x_per_block);
M
Markus Kliegl 已提交
170 171 172 173
    dim3 grid_dim(num_x_blocks, y_width, batch_size);

    if (dX) {
      T *dx_data = dX->mutable_data<T>(context.GetPlace());
M
Markus Kliegl 已提交
174 175 176 177
      zero(device_ctx, dX, static_cast<T>(0.0));
      ConvShiftGradX<T><<<grid_dim, x_per_block, 0, device_ctx.stream()>>>(
          dout_data, y_data, x_width, y_width, y_half_width, batch_size,
          dx_data);
M
Markus Kliegl 已提交
178 179 180
    }
    if (dY) {
      T *dy_data = dY->mutable_data<T>(context.GetPlace());
M
Markus Kliegl 已提交
181 182 183 184
      zero(device_ctx, dY, static_cast<T>(0.0));
      ConvShiftDy<T><<<grid_dim, x_per_block, 0, device_ctx.stream()>>>(
          x_data, dout_data, x_width, y_width, y_half_width, batch_size,
          dy_data);
M
Markus Kliegl 已提交
185 186 187 188 189 190 191
    }
  }
};
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
Q
QI JUN 已提交
192 193 194 195
REGISTER_OP_CUDA_KERNEL(
    conv_shift,
    ops::ConvShiftKernel<paddle::platform::CUDADeviceContext, float>);
REGISTER_OP_CUDA_KERNEL(
M
Markus Kliegl 已提交
196
    conv_shift_grad,
Q
QI JUN 已提交
197
    ops::ConvShiftGradKernel<paddle::platform::CUDADeviceContext, float>);