data_layout_transform.h 2.7 KB
Newer Older
1
//   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2 3 4 5 6 7 8 9 10 11 12 13
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
14 15 16

#pragma once

M
mozga-intel 已提交
17
#include <map>
18
#include <vector>
Y
Yi Wang 已提交
19 20 21
#include "paddle/fluid/framework/op_kernel_type.h"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/framework/variable.h"
22 23 24 25

namespace paddle {
namespace framework {

M
mozga-intel 已提交
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
#ifdef PADDLE_WITH_MKLDNN
using MKLDNNFormat = mkldnn::memory::format;
using MKLDNNDataType = mkldnn::memory::data_type;

inline MKLDNNFormat ToMKLDNNFormat(const DataLayout& layout) {
  switch (layout) {
    case DataLayout::kNHWC:
      return MKLDNNFormat::nhwc;
    case DataLayout::kNCHW:
      return MKLDNNFormat::nchw;
    default:
      PADDLE_THROW("Fail to convert layout %s to MKLDNN format",
                   DataLayoutToString(layout));
  }
}

inline DataLayout ToPaddleLayout(const MKLDNNFormat& format) {
  switch (format) {
    case MKLDNNFormat::nhwc:
      return DataLayout::kNHWC;
    case MKLDNNFormat::nchw:
      return DataLayout::kNCHW;
    default:
      PADDLE_THROW("Fail to convert MKLDNN format to paddle layout");
  }
}

inline MKLDNNDataType ToMKLDNNDataType(const std::type_index type) {
  static const std::map<std::type_index, MKLDNNDataType> dict{
      {std::type_index(typeid(float)), MKLDNNDataType::f32},  // NOLINT
      {std::type_index(typeid(char)), MKLDNNDataType::s8},    // NOLINT
      {std::type_index(typeid(unsigned char)), MKLDNNDataType::u8},
      {std::type_index(typeid(int16_t)), MKLDNNDataType::s16},
      {std::type_index(typeid(int32_t)), MKLDNNDataType::s32}};
  auto iter = dict.find(type);
  if (iter != dict.end()) return iter->second;
  return MKLDNNDataType::data_undef;
}
#endif

void TransDataLayoutFromMKLDNN(const OpKernelType& kernel_type_for_var,
                               const OpKernelType& expected_kernel_type,
                               const Tensor& in, Tensor* out);

70
std::vector<int> GetAxis(const DataLayout& from, const DataLayout& to);
71

72 73 74
void TransDataLayout(const OpKernelType& kernel_type_for_var,
                     const OpKernelType& expected_kernel_type, const Tensor& in,
                     Tensor* out);
75 76 77

}  // namespace framework
}  // namespace paddle