spawn.py 16.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function, division

import multiprocessing
import os
import signal
import six
import sys
import warnings

24 25
from paddle.distributed.utils import _print_arguments, _prepare_trainer_env
from paddle.distributed.cloud_utils import get_cluster_and_pod
26 27 28 29
from paddle.device import get_device

# deprecated module import
from paddle.fluid import core
30
from paddle.fluid.framework import _cpu_num, set_flags
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66


class ParallelEnvArgs(object):
    def __init__(self):
        # Paddle cluster nodes ips, such as 192.168.0.16,192.168.0.17..
        self.cluster_node_ips = None

        # The current node ip.
        self.node_ip = None

        # whether to use paddlecloud platform to run your multi-process job.
        # If false, no need to set this argument.
        self.use_paddlecloud = None

        # The trainer's started port on a single node
        self.started_port = None

        # Print the config or not
        self.print_config = True

        # It's for gpu training and the training process will run 
        # on the selected_gpus, each process is bound to a single GPU. 
        # And if it's not set, this module will use all the gpu cards 
        # for training.
        self.selected_gpus = None


def _py_supported_check():
    if not sys.version_info >= (3, 4):
        raise RuntimeError(
            "Use `paddle.distributed.spawn` to start parallel training "
            "requires python version greater than 3.4, if your python "
            "is lower than this version, please use "
            "`paddle.distributed.launch` instead.")


67 68 69 70 71 72 73 74 75 76 77 78
def _options_valid_check(options):
    supported_options = [
        'start_method', 'cluster_node_ips', 'node_ip', 'started_port',
        'selected_gpus', 'print_config', 'use_paddlecloud'
    ]
    for key in options:
        if key not in supported_options:
            raise ValueError(
                "The config option (%s) of `paddle.distributed.spawn` is not supported."
                % key)


79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
def _get_subprocess_env_list(nprocs, options):
    # contruct processes env list
    processes_env_list = []

    # get args from kwargs
    args = ParallelEnvArgs()

    # set default `node_ip` and `cluster_node_ips`
    args.cluster_node_ips = options.get('cluster_node_ips', None)
    args.node_ip = options.get('node_ip', None)
    if args.cluster_node_ips is not None and args.node_ip is None:
        raise ValueError("please input current node ip, "
                         "cannot only give `cluster_node_ips`.")
    default_node_ip = "127.0.0.1"
    if args.node_ip is None:
        args.node_ip = default_node_ip
    if args.cluster_node_ips is None:
        args.cluster_node_ips = default_node_ip

    # set default selected gpus
    # e.g. if the nprocs is 4, the selected gpus is "0,1,2,3"
    # NOTE(chenweihang): [ why not use FLAGS_selected_gpus directly? ]
    # because the FLAGS_selected_gpus may be used in other place,
    # if we set FLAGS_selected_gpus to be `0,1,2,3`, it may cause error
    # when using `ParallelEnv`
    # NOTE(chenweihang): use absolute gpu card id
    args.selected_gpus = options.get('selected_gpus', None)
    env_devices = os.getenv("CUDA_VISIBLE_DEVICES", None)
    if env_devices is None or env_devices == "":
        env_devices_list = [
            str(x) for x in six.moves.range(core.get_cuda_device_count())
        ]
    else:
        env_devices_list = env_devices.split(',')
    if args.selected_gpus is None:
        if len(env_devices_list) < nprocs:
            raise RuntimeError(
                "the number of visible devices(%d) is less than the number "
                "of spawn processes(%d), please ensure that the correct "
                "`nprocs` argument is passed or the environment variable "
                "`CUDA_VISIBLE_DEVICES` is correctly configured." %
                (len(env_devices_list), nprocs))
        args.selected_gpus = ",".join(
            [str(env_devices_list[x]) for x in range(0, nprocs)])
    else:
        for card_id in args.selected_gpus.split(','):
            if card_id not in env_devices_list:
                raise ValueError("The selected gpu card %s cannot found in "
                                 "CUDA_VISIBLE_DEVICES (%s)." %
                                 (card_id, ",".join(env_devices_list)))

    # set other arguments
    args.started_port = options.get('started_port', None)
    args.use_paddlecloud = options.get('use_paddlecloud', False)
    args.print_config = options.get('print_config', False)

    cluster, pod = get_cluster_and_pod(args)

    # prepare subprocess env list
    for trainer in pod.trainers:
        processes_env_list.append(_prepare_trainer_env(cluster, trainer))

    # print config
    if args.print_config:
        _print_arguments(args)

    return processes_env_list


def _remove_risky_env():
149
    # remove useless env vars
150 151 152 153 154 155
    # no copy, each process will hold env vars itself
    os.environ.pop("http_proxy", None)
    os.environ.pop("https_proxy", None)


def _set_trainer_env(env_dict):
156 157 158 159 160 161
    # NOTE(chenweihang): [ Why need set FLAGS_selected_gpus here? ]
    # When the child process starts, it will inherit the configuration of the 
    # main process and set the FLAGS once, but the environment variable has 
    # not been set at this time, which leads to the FLAGS_selected_gpus 
    # is keep same with mainprocess(usually empty), so manually update the flags here
    set_flags({'FLAGS_selected_gpus': env_dict['FLAGS_selected_gpus']})
162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
    for var_name in env_dict:
        os.environ[var_name] = env_dict[var_name]


def _func_wrapper(func, args, error_queue, return_queue, env_dict):
    try:
        # config subprocess environment variables
        _remove_risky_env()
        _set_trainer_env(env_dict)
        # execute function
        result = func(*args)
        # record function return value
        return_queue.put(result)
    except KeyboardInterrupt:
        pass
    except Exception:
        import traceback
        error_queue.put(traceback.format_exc())
        sys.exit(1)


class MultiprocessContext(object):
    def __init__(self, processes, error_queues, return_queues):
        _py_supported_check()
        self.error_queues = error_queues
        # NOTE(chenweihang): The `spawn` method is mainly used 
        # to wrap the outermost execution function of the program for 
        # parallel execution. Generally, the return value is not concerned, 
        # but if the user needs to obtain the return value, users can get  
        # the return result of each process from context.return_queues
        self.return_queues = return_queues
        self.processes = processes
        self.sentinels = {
            process.sentinel: index
            for index, process in enumerate(processes)
        }

    def join(self, timeout=None):
        if len(self.sentinels) == 0:
            return True

        ready = multiprocessing.connection.wait(
            self.sentinels.keys(), timeout=timeout)

        error_index = None
        for sentinel in ready:
            index = self.sentinels.pop(sentinel)
            process = self.processes[index]
            process.join()
            if process.exitcode != 0:
                error_index = index
                break

        if error_index is None:
            return len(self.sentinels) == 0

        for process in self.processes:
            if process.is_alive():
                process.terminate()
            process.join()

        self._throw_exception(error_index)

    def _throw_exception(self, error_index):
        if self.error_queues[error_index].empty():
            exitcode = self.processes[error_index].exitcode
            if exitcode < 0:
                name = signal.Signals(-exitcode).name
                raise Exception("Process %d terminated with signal %s." %
                                (error_index, name))
            else:
                raise Exception("Process %d terminated with exit code %d." & (
                    error_index, exitcode))

        original_trace = self.error_queues[error_index].get()
        msg = "\n\n----------------------------------------------\n" \
              "Process %d terminated with the following error:\n" \
              "----------------------------------------------\n\n" % error_index
        msg += original_trace
        raise Exception(msg)


def spawn(func, args=(), nprocs=-1, join=True, daemon=False, **options):
    """
    Start multiple processes with ``spawn`` method for parallel training.

    Args:
        func (function): The target function is called by spawned process.
            This function need to be able to pickled, so it must be defined
            at the top level of a module.
        args (tuple, optional): Arguments passed to ``func``.
        nprocs (int, optional): Number of processed to start. Default: -1.
            when nprocs is -1, the available device will be obtained from 
            the environment variable when the model is executed: If use GPU, 
            the currently available device ID is obtained from the environment 
            variable CUDA_VISIBLE_DEVICES; If use CPU, the currently available
            CPU number is obtained from the environment variable CPU_NUM. 
            For example, export CPU_NUM=4, if the environment variable is not set, 
260 261
            the spawn method will add default value to the environment variable 
            and set its value to 1.
262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
        join (bool, optional): Perform a blocking join on all spawned processes.
            Default: True.
        daemon (bool, optional): The spawned processes' daemon flag. Default: False.
        **options(dict, optional): Other initial parallel execution environment 
            configuration options. The following options are currently supported: 
            (1) start_method (string): the way to start a process. 
            The start method can be ``spawn`` , ``fork`` , ``forkserver`` . 
            Because the CUDA runtime does not support the ``fork`` start method, 
            when use CUDA in subprocesses, we should start process by ``spawn`` 
            or ``forkserver`` method. Default: "spawn" ; 
            (2) cluster_node_ips (string): Paddle cluster nodes ips, such as 
            "192.168.0.16,192.168.0.17". Default: "127.0.0.1"; 
            (3) node_ip (string): The current node ip, such as "192.168.0.16". 
            Default: "127.0.0.1"; 
            (4) started_port (int): The trainer's started port on a single node,
            such as 6170. Default: None; 
            (5) selected_gpus (string): The training process will run on the 
            selected_gpus, such as "0,1,2,3". Default: None; 
280 281
            (6) print_config (bool): Print current parallel training config. Default: False;
            (7) use_paddlecloud (bool): Whether to use paddlecloud platform to run your 
282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
            multi-process job. Default: False.

    Returns:
        ``MultiprocessContext`` object, it hold the spawned processes.

    Examples:
        .. code-block:: python

            from __future__ import print_function

            import paddle
            import paddle.nn as nn
            import paddle.optimizer as opt
            import paddle.distributed as dist

            class LinearNet(nn.Layer):
                def __init__(self):
                    super(LinearNet, self).__init__()
                    self._linear1 = nn.Linear(10, 10)
                    self._linear2 = nn.Linear(10, 1)
                    
                def forward(self, x):
                    return self._linear2(self._linear1(x))

306 307
            def train(print_result=False): 
                # 1. initialize parallel environment
308 309
                dist.init_parallel_env()

310
                # 2. create data parallel layer & optimizer
311 312 313 314 315 316 317
                layer = LinearNet()
                dp_layer = paddle.DataParallel(layer)

                loss_fn = nn.MSELoss()
                adam = opt.Adam(
                    learning_rate=0.001, parameters=dp_layer.parameters())

318
                # 3. run layer
319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
                inputs = paddle.randn([10, 10], 'float32')
                outputs = dp_layer(inputs)
                labels = paddle.randn([10, 1], 'float32')
                loss = loss_fn(outputs, labels)
                
                if print_result is True:
                    print("loss:", loss.numpy())
                
                loss.backward()

                adam.step()
                adam.clear_grad()

            # Usage 1: only pass function. 
            # If your training method no need any argument, and 
            # use all visible devices for parallel training. 
            if __name__ == '__main__':
                dist.spawn(train)

            # Usage 2: pass function and arguments.
            # If your training method need some arguments, and 
            # use all visible devices for parallel training.
            if __name__ == '__main__':
                dist.spawn(train, args=(True,))

            # Usage 3: pass function, arguments and nprocs.
            # If your training method need some arguments, and 
            # only use part of visible devices for parallel training.
            # If your machine hold 8 cards {0,1,2,3,4,5,6,7},
            # this case will use cards {0,1}; If you set 
            # CUDA_VISIBLE_DEVICES=4,5,6,7, this case will use
            # cards {4,5}
            if __name__ == '__main__':
                dist.spawn(train, args=(True,), nprocs=2)

            # Usage 4: pass function, arguments, nprocs and selected_gpus.
            # If your training method need some arguments, and 
            # only use part of visible devices for parallel training,
357
            # but you can't set your machine's environment variable 
358
            # CUDA_VISIBLE_DEVICES, such as it is None or all cards
359
            # {0,1,2,3,4,5,6,7}, you can pass `selected_gpus` to 
360 361 362
            # select the GPU cards you want to use. For example,
            # this case will use cards {4,5} if your machine hold 8 cards.
            if __name__ == '__main__':
363
                dist.spawn(train, args=(True,), nprocs=2, selected_gpus='4,5')
364 365 366 367 368 369 370 371
    """
    # NOTE(chenweihang): [ why only supports python3.4+ ? ]
    # Python supported setting the child process startup method
    # since 3.4. The previous version can only use the default startup 
    # method, while the default startup method of Unix is fork, which 
    # cannot support CUDA runtime multi-process
    _py_supported_check()

372 373 374 375
    # Give an error hint when the users enter a configuration option 
    # that does not exist
    _options_valid_check(options)

376 377 378 379 380
    # get default nprocs
    if nprocs == -1:
        device = get_device()
        if device == 'cpu':
            # TODO: not supports cpu parallel now
381
            nprocs = _cpu_num()
382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
        else:
            nprocs = core.get_cuda_device_count()

    # NOTE(chenweihang): [ why need get cluster info before run? ]
    # when using `paddle.distributed.spawn` start parallel training, 
    # we should get cluster info before starting subprocess, and pass 
    # correct info to each subprocess
    procs_env_list = _get_subprocess_env_list(nprocs, options)

    # start processes
    # NOTE(chenweihang): [ why default start method is spawn? ]
    # The CUDA runtime does not support the fork start method, 
    # either the spawn or forkserver start method are required 
    # to use CUDA in subprocesses.
    start_method = options.get('start_method', None)
    if start_method is None:
        start_method = 'spawn'
    mp = multiprocessing.get_context(start_method)

    error_queues = []
    return_queues = []
    processes = []
    for i in range(nprocs):
        error_queue = mp.SimpleQueue()
        return_queue = mp.SimpleQueue()
        process = mp.Process(
            target=_func_wrapper,
            args=(func, args, error_queue, return_queue, procs_env_list[i]))
        process.daemon = daemon
        process.start()
        error_queues.append(error_queue)
        return_queues.append(return_queue)
        processes.append(process)

    context = MultiprocessContext(processes, error_queues, return_queues)
    if not join:
        return context

    # loop until all process end
    while not context.join():
        pass

    # finally return context
    return context