api_impl.cc 10.2 KB
Newer Older
X
Xin Pan 已提交
1 2
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Y
Yan Chunwei 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
X
Xin Pan 已提交
6

Y
Yan Chunwei 已提交
7
http://www.apache.org/licenses/LICENSE-2.0
X
Xin Pan 已提交
8

Y
Yan Chunwei 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
X
Xin Pan 已提交
14 15 16 17 18 19 20 21 22

#include <algorithm>
#include <map>
#include <set>
#include <sstream>
#include <string>
#include <utility>
#include <vector>

23
#include "paddle/fluid/framework/feed_fetch_method.h"
L
Luo Tao 已提交
24
#include "paddle/fluid/inference/api/api_impl.h"
Y
Yan Chunwei 已提交
25
#include "paddle/fluid/inference/api/details/reset_tensor_array.h"
26
#include "paddle/fluid/inference/api/helper.h"
27
#include "paddle/fluid/platform/cpu_helper.h"
28 29 30
#include "paddle/fluid/platform/profiler.h"

DEFINE_bool(profile, false, "Turn on profiler for fluid");
X
Xin Pan 已提交
31 32

namespace paddle {
33 34 35 36 37 38 39 40 41 42
namespace {
using paddle::inference::Timer;

template <class T>
std::string num2str(T a) {
  std::stringstream istr;
  istr << a;
  return istr.str();
}
}  // namespace
X
Xin Pan 已提交
43

44 45 46 47
void NativePaddlePredictor::PrepareFeedFetch() {
  for (auto *op : inference_program_->Block(0).AllOps()) {
    if (op->Type() == "feed") {
      int idx = boost::get<int>(op->GetAttr("col"));
T
tensor-tang 已提交
48
      if (feeds_.size() <= static_cast<size_t>(idx)) {
49 50 51 52 53 54
        feeds_.resize(idx + 1);
      }
      feeds_[idx] = op;
      feed_names_[op->Output("Out")[0]] = idx;
    } else if (op->Type() == "fetch") {
      int idx = boost::get<int>(op->GetAttr("col"));
T
tensor-tang 已提交
55
      if (fetchs_.size() <= static_cast<size_t>(idx)) {
56 57 58 59 60 61 62
        fetchs_.resize(idx + 1);
      }
      fetchs_[idx] = op;
    }
  }
}

T
tensor-tang 已提交
63 64
bool NativePaddlePredictor::Init(
    std::shared_ptr<framework::Scope> parent_scope) {
65
  VLOG(3) << "Predictor::init()";
D
dzhwinter 已提交
66
#if !defined(_WIN32)
67 68 69 70 71 72 73 74
  if (FLAGS_profile) {
    LOG(WARNING) << "Profiler is actived, might affect the performance";
    LOG(INFO) << "You can turn off by set gflags '-profile false'";

    auto tracking_device = config_.use_gpu ? platform::ProfilerState::kAll
                                           : platform::ProfilerState::kCPU;
    platform::EnableProfiler(tracking_device);
  }
D
dzhwinter 已提交
75
#endif
76

77
  // no matter with or without MKLDNN
L
luotao1 已提交
78
  paddle::platform::SetNumThreads(config_.cpu_math_library_num_threads());
79

Y
Yan Chunwei 已提交
80
  if (config_.use_gpu) {
X
Xin Pan 已提交
81 82 83 84
    place_ = paddle::platform::CUDAPlace(config_.device);
  } else {
    place_ = paddle::platform::CPUPlace();
  }
T
tensor-tang 已提交
85 86 87
  if (parent_scope) {
    scope_ = parent_scope;
    sub_scope_ = &(parent_scope->NewScope());
T
tensor-tang 已提交
88
    PADDLE_ENFORCE_NOT_NULL(sub_scope_, "create sub scope fail");
89 90 91 92
  } else {
    paddle::framework::InitDevices(false);
    scope_.reset(new paddle::framework::Scope());
  }
93

X
Xin Pan 已提交
94
  executor_.reset(new paddle::framework::Executor(place_));
95

X
Xin Pan 已提交
96 97 98 99
  // Initialize the inference program
  if (!config_.model_dir.empty()) {
    // Parameters are saved in separate files sited in
    // the specified `dirname`.
100 101
    inference_program_ = paddle::inference::Load(executor_.get(), scope_.get(),
                                                 config_.model_dir);
X
Xin Pan 已提交
102 103 104 105 106 107 108
  } else if (!config_.prog_file.empty() && !config_.param_file.empty()) {
    // All parameters are saved in a single file.
    // The file names should be consistent with that used
    // in Python API `fluid.io.save_inference_model`.
    inference_program_ = paddle::inference::Load(
        executor_.get(), scope_.get(), config_.prog_file, config_.param_file);
  } else {
Y
Yan Chunwei 已提交
109
    LOG(ERROR) << "fail to load inference model from " << config_.model_dir;
X
Xin Pan 已提交
110 111
    return false;
  }
112

X
Xin Pan 已提交
113
  ctx_ = executor_->Prepare(*inference_program_, 0);
114 115
  executor_->CreateVariables(*inference_program_,
                             sub_scope_ ? sub_scope_ : scope_.get(), 0);
Y
Yan Chunwei 已提交
116

X
Xin Pan 已提交
117
  // Get the feed_target_names and fetch_target_names
118
  PrepareFeedFetch();
X
Xin Pan 已提交
119 120 121
  return true;
}

122
NativePaddlePredictor::~NativePaddlePredictor() {
D
dzhwinter 已提交
123
#if !defined(_WIN32)
124 125 126 127
  if (FLAGS_profile) {
    platform::DisableProfiler(platform::EventSortingKey::kTotal,
                              "./profile.log");
  }
D
dzhwinter 已提交
128
#endif
129 130 131
  if (sub_scope_) {
    scope_->DeleteScope(sub_scope_);
  }
L
Luo Tao 已提交
132
}
133

Y
Yan Chunwei 已提交
134
bool NativePaddlePredictor::Run(const std::vector<PaddleTensor> &inputs,
135 136
                                std::vector<PaddleTensor> *output_data,
                                int batch_size) {
137
  VLOG(3) << "Predictor::predict";
X
Xin Pan 已提交
138 139 140
  Timer timer;
  timer.tic();
  // set feed variable
141 142
  framework::Scope *scope = sub_scope_ != nullptr ? sub_scope_ : scope_.get();
  if (!SetFeed(inputs, scope)) {
X
Xin Pan 已提交
143 144 145 146 147
    LOG(ERROR) << "fail to set feed";
    return false;
  }
  // Run the inference program
  // if share variables, we need not create variables
148
  VLOG(4) << "Run prepared context";
149 150
  executor_->RunPreparedContext(ctx_.get(), scope,
                                false, /* don't create local scope each time*/
151
                                false /* don't create variable each time */);
152
  VLOG(4) << "Finish prepared context";
153 154
  // get fetch variable
  if (!GetFetch(output_data, scope)) {
155
    LOG(ERROR) << "fail to get fetches";
X
Xin Pan 已提交
156 157
    return false;
  }
158
  VLOG(30) << "predict cost: " << timer.toc() << "ms";
Y
Yan Chunwei 已提交
159 160 161 162

  // Fix TensorArray reuse not cleaned bug.
  tensor_array_batch_cleaner_.CollectTensorArrays(scope_.get());
  tensor_array_batch_cleaner_.ResetTensorArray();
X
Xin Pan 已提交
163 164 165
  return true;
}

Y
Yan Chunwei 已提交
166
std::unique_ptr<PaddlePredictor> NativePaddlePredictor::Clone() {
167
  VLOG(3) << "Predictor::clone";
Y
Yan Chunwei 已提交
168 169
  std::unique_ptr<PaddlePredictor> cls(new NativePaddlePredictor(config_));

170
  if (!dynamic_cast<NativePaddlePredictor *>(cls.get())->Init(scope_)) {
Y
Yan Chunwei 已提交
171
    LOG(ERROR) << "fail to call Init";
X
Xin Pan 已提交
172 173
    return nullptr;
  }
J
Fix mac  
JiabinYang 已提交
174 175 176 177
#ifdef __clang__
  // fix clang compile error
  return cls;
#else
178 179
  // fix manylinux compile error.
  return std::move(cls);
J
Fix mac  
JiabinYang 已提交
180
#endif
X
Xin Pan 已提交
181 182
}

Y
Yan Chunwei 已提交
183
bool NativePaddlePredictor::SetFeed(const std::vector<PaddleTensor> &inputs,
184
                                    framework::Scope *scope) {
185
  VLOG(3) << "Predictor::set_feed";
186
  if (inputs.size() != feeds_.size()) {
187 188
    LOG(ERROR) << "wrong feed input size, need " << feeds_.size() << " but get "
               << inputs.size();
X
Xin Pan 已提交
189 190
    return false;
  }
191
  for (size_t i = 0; i < inputs.size(); ++i) {
192 193
    framework::LoDTensor input;
    framework::DDim ddim = framework::make_ddim(inputs[i].shape);
X
Xin Pan 已提交
194 195
    void *input_ptr;
    if (inputs[i].dtype == PaddleDType::INT64) {
196
      input_ptr = input.mutable_data<int64_t>(ddim, platform::CPUPlace());
X
Xin Pan 已提交
197
    } else if (inputs[i].dtype == PaddleDType::FLOAT32) {
198
      input_ptr = input.mutable_data<float>(ddim, platform::CPUPlace());
X
Xin Pan 已提交
199 200 201 202 203 204
    } else {
      LOG(ERROR) << "unsupported feed type " << inputs[i].dtype;
      return false;
    }

    // TODO(panyx0718): Init LoDTensor from existing memcpy to save a copy.
205
    std::memcpy(static_cast<void *>(input_ptr), inputs[i].data.data(),
206
                inputs[i].data.length());
Y
Yan Chunwei 已提交
207 208 209 210 211 212
    // TODO(Superjomn) Low performance, need optimization for heavy LoD copy.
    framework::LoD lod;
    for (auto &level : inputs[i].lod) {
      lod.emplace_back(level);
    }
    input.set_lod(lod);
213 214
    int idx = -1;
    if (config_.specify_input_name) {
X
polish  
Xin Pan 已提交
215
      idx = feed_names_[inputs[i].name];
216 217 218 219
    } else {
      idx = boost::get<int>(feeds_[i]->GetAttr("col"));
    }
    framework::SetFeedVariable(scope, input, "feed", idx);
X
Xin Pan 已提交
220 221 222
  }
  return true;
}
L
luotao1 已提交
223 224 225
template <typename T>
void NativePaddlePredictor::GetFetchOne(const framework::LoDTensor &fetch,
                                        PaddleTensor *output) {
226 227 228 229 230 231 232 233 234 235 236 237 238 239
  // set shape.
  auto shape = framework::vectorize(fetch.dims());
  output->shape.assign(shape.begin(), shape.end());
  // set data.
  const T *data = fetch.data<T>();
  int num_elems = inference::VecReduceToInt(shape);
  output->data.Resize(num_elems * sizeof(T));
  // The fetched tensor output by fetch op, should always in CPU memory, so just
  // copy.
  memcpy(output->data.data(), data, num_elems * sizeof(T));
  // set lod
  output->lod.clear();
  for (auto &level : fetch.lod()) {
    output->lod.emplace_back(level.begin(), level.end());
L
luotao1 已提交
240 241
  }
}
X
Xin Pan 已提交
242

243 244
bool NativePaddlePredictor::GetFetch(std::vector<PaddleTensor> *outputs,
                                     framework::Scope *scope) {
245
  VLOG(3) << "Predictor::get_fetch";
246 247 248
  outputs->resize(fetchs_.size());
  for (size_t i = 0; i < fetchs_.size(); ++i) {
    int idx = boost::get<int>(fetchs_[i]->GetAttr("col"));
L
luotao1 已提交
249 250
    PADDLE_ENFORCE((size_t)idx == i);
    framework::LoDTensor &fetch =
251
        framework::GetFetchVariable(*scope, "fetch", idx);
L
luotao1 已提交
252 253 254 255 256 257 258 259
    auto type = fetch.type();
    auto output = &(outputs->at(i));
    if (type == typeid(float)) {
      GetFetchOne<float>(fetch, output);
      output->dtype = PaddleDType::FLOAT32;
    } else if (type == typeid(int64_t)) {
      GetFetchOne<int64_t>(fetch, output);
      output->dtype = PaddleDType::INT64;
X
Xin Pan 已提交
260
    } else {
L
luotao1 已提交
261
      LOG(ERROR) << "unknown type, only support float32 and int64 now.";
Y
Yan Chunwei 已提交
262
    }
X
Xin Pan 已提交
263 264 265 266
  }
  return true;
}

267
template <>
268 269
std::unique_ptr<PaddlePredictor> CreatePaddlePredictor<
    NativeConfig, PaddleEngineKind::kNative>(const NativeConfig &config) {
270
  VLOG(3) << "create NativePaddlePredictor";
Y
Yan Chunwei 已提交
271 272
  if (config.use_gpu) {
    // 1. GPU memeroy
273
    PADDLE_ENFORCE_GT(
274
        config.fraction_of_gpu_memory, 0.f,
275
        "fraction_of_gpu_memory in the config should be set to range (0., 1.]");
276
    PADDLE_ENFORCE_GE(config.device, 0, "Invalid device id %d", config.device);
Y
Yan Chunwei 已提交
277 278 279 280 281
    std::vector<std::string> flags;
    if (config.fraction_of_gpu_memory >= 0.0f ||
        config.fraction_of_gpu_memory <= 0.95f) {
      flags.push_back("dummpy");
      std::string flag = "--fraction_of_gpu_memory_to_use=" +
282
                         num2str<float>(config.fraction_of_gpu_memory);
Y
Yan Chunwei 已提交
283
      flags.push_back(flag);
284
      VLOG(3) << "set flag: " << flag;
Y
Yan Chunwei 已提交
285 286
      framework::InitGflags(flags);
    }
X
Xin Pan 已提交
287
  }
288

Y
Yan Chunwei 已提交
289
  std::unique_ptr<PaddlePredictor> predictor(new NativePaddlePredictor(config));
T
tensor-tang 已提交
290
  if (!dynamic_cast<NativePaddlePredictor *>(predictor.get())->Init(nullptr)) {
X
Xin Pan 已提交
291 292
    return nullptr;
  }
J
Fix mac  
JiabinYang 已提交
293
#ifdef __clang__
J
Jiabin Yang 已提交
294
  // fix clang compile error
J
Fix mac  
JiabinYang 已提交
295 296
  return predictor;
#else
297
  return std::move(predictor);
J
Fix mac  
JiabinYang 已提交
298
#endif
X
Xin Pan 已提交
299 300
}

Y
Yan Chunwei 已提交
301 302 303 304 305 306
template <>
std::unique_ptr<PaddlePredictor> CreatePaddlePredictor<NativeConfig>(
    const NativeConfig &config) {
  return CreatePaddlePredictor<NativeConfig, PaddleEngineKind::kNative>(config);
}

X
Xin Pan 已提交
307
}  // namespace paddle