dist_attribute.py 19.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
#   Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License

import copy
from collections import defaultdict
from paddle.fluid.framework import Variable
from .process_mesh import ProcessMesh

_g_tensor_dist_attr_field_keys = [
    "process_mesh", "dims_mapping", "shard_sizes", "device_placement"
]

24 25 26
_g_op_dist_attr_field_keys = [
    "process_mesh", "impl_type", "impl_idx", "is_recompute"
]
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54

_g_op_input_suffix = "@input"

_g_op_output_suffix = "@output"


def get_tensor_dist_attr_field_keys():
    global _g_tensor_dist_attr_field_keys
    return _g_tensor_dist_attr_field_keys


def get_op_dist_attr_field_keys():
    global _g_op_dist_attr_field_keys
    return _g_op_dist_attr_field_keys


def append_op_input_suffix(name):
    global _g_op_input_suffix
    return name + _g_op_input_suffix


def append_op_output_suffix(name):
    global _g_op_output_suffix
    return name + _g_op_output_suffix


class TensorDistributedAttribute:
    def __init__(self):
55
        # The process mesh of distributed operator attribute must is the same as
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
        # the process meshes of all input and output distributed attributed
        self._process_mesh = None
        self._dims_mapping = None
        self._shard_sizes = None
        self._device_placement = None
        self._is_annotated = {}

    @property
    def process_mesh(self):
        return self._process_mesh

    @process_mesh.setter
    def process_mesh(self, process_mesh):
        if process_mesh is not None:
            assert isinstance(process_mesh, (list, ProcessMesh)), \
                "The type of process_mesh must be list or ProcessMesh."
            if isinstance(process_mesh, list):
                process_mesh = ProcessMesh(process_mesh)
            self._process_mesh = copy.deepcopy(process_mesh)

    @property
    def dims_mapping(self):
        return self._dims_mapping

    @dims_mapping.setter
    def dims_mapping(self, dims_mapping):
        if dims_mapping is not None:
            assert isinstance(dims_mapping, list), \
                "The type of dims_mapping must be list."
            assert all(isinstance(x, int) for x in dims_mapping), \
                ("All elements of dims_mapping must be integer")
            assert all(x >= -1 for x in dims_mapping), \
                ("All elements of dims_mapping must be greater than or equal to -1.")
            self._dims_mapping = copy.deepcopy(dims_mapping)

    @property
    def shard_sizes(self):
        return self._shard_sizes

    @shard_sizes.setter
    def shard_sizes(self, shard_sizes):
        if shard_sizes is not None:
            self._shard_sizes = copy.deepcopy(shard_sizes)

    @property
    def device_placement(self):
        return self._device_placement

    @device_placement.setter
    def device_placement(self, device_placement):
        if device_placement is not None:
            self._device_placement = copy.deepcopy(device_placement)

    def init(self, dist_attr):
        if dist_attr is None:
            return
        assert isinstance(dist_attr, (dict, TensorDistributedAttribute)), \
            "The type of dist_attr must be dict or TensorDistributedAttribute."
        if isinstance(dist_attr, dict):
            for key, value in dist_attr.items():
                if key in get_tensor_dist_attr_field_keys():
                    field_property = TensorDistributedAttribute.__dict__.get(
                        key, None)
                    if field_property:
                        field_property.fset(self, value)
                    else:
                        assert False, "No setter for {} in args {}.".format(
                            key, dist_attr)
        elif isinstance(dist_attr, TensorDistributedAttribute):
            for key in get_tensor_dist_attr_field_keys():
                field_property = TensorDistributedAttribute.__dict__.get(key,
                                                                         None)
                if field_property:
                    field_property.fset(self, field_property.fget(dist_attr))
                else:
                    assert False, "No setter for {} in args {}.".format(
                        key, dist_attr)
            self._is_annotated = copy.deepcopy(dist_attr._is_annotated)

135 136 137 138 139 140 141 142 143 144
    # def reset(self, skip_dist_attr_field_names):
    #     if skip_dist_attr_field_names is not None \
    #         and "process_mesh" not in skip_dist_attr_field_names:
    #         self._process_mesh = None
    #     if skip_dist_attr_field_names is not None \
    #         and "dims_mapping" not in skip_dist_attr_field_names:
    #         for i in enumerate(self._dims_mapping):
    #             self._dims_mapping[i] = -1
    #     self._is_annotated = {}

145 146 147
    def is_annotated(self, dist_attr_field_name):
        return self._is_annotated.get(dist_attr_field_name, False)

148 149 150 151
    # def mark_annotated_all(self):
    #     for key in get_tensor_dist_attr_field_keys():
    #         self.mark_annotated(key)

152 153 154
    def mark_annotated(self, dist_attr_field_name):
        self._is_annotated[dist_attr_field_name] = True

155 156 157
    # def unmark_annotated(self, dist_attr_field_name):
    #     self._is_annotated[dist_attr_field_name] = False

158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
    def mark_annotated_as(self, dist_attr):
        if dist_attr is None:
            return
        assert isinstance(dist_attr, (dict, TensorDistributedAttribute)), \
            "The type of dist_attr must be dict or TensorDistributedAttribute."
        if isinstance(dist_attr, dict):
            for key in dist_attr.keys():
                if key in get_tensor_dist_attr_field_keys():
                    self.mark_annotated(key)
        elif isinstance(dist_attr, TensorDistributedAttribute):
            self._is_annotated = copy.deepcopy(dist_attr._is_annotated)

    def clear_annotated(self):
        self._is_annotated.clear()

    def __str__(self):
        str = "\n\ttensor_dist_attr = {"
        if self.is_annotated("process_mesh"):
            annotated_str = "annotated"
        else:
            annotated_str = "non-annotated"
        str += "\n\t\tprocess_mesh ({}): {},".format(annotated_str,
                                                     self.process_mesh)

        if self.is_annotated("dims_mapping"):
            annotated_str = "annotated"
        else:
            annotated_str = "non-annotated"
        str += "\n\t\tdims_mapping ({}): {}".format(annotated_str,
                                                    self.dims_mapping)
        str += "\n\t}"
        return str


class OperatorDistributedAttribute:
    def __init__(self):
        self._process_mesh = None
195
        self._op_type = None
196 197 198 199 200
        self._impl_type = None
        self._impl_idx = None
        self._inputs_dist_attrs = {}
        self._outputs_dist_attrs = {}
        self._is_annotated = {}
201
        self._is_recompute = False
202 203 204 205 206 207 208 209 210 211 212 213 214

    @property
    def process_mesh(self):
        return self._process_mesh

    @process_mesh.setter
    def process_mesh(self, process_mesh):
        if process_mesh is not None:
            assert isinstance(process_mesh, (list, ProcessMesh)), \
                "The type of process_mesh must be list or ProcessMesh."
            if isinstance(process_mesh, list):
                process_mesh = ProcessMesh(process_mesh)
            self._process_mesh = copy.deepcopy(process_mesh)
215
            # In while op, the proess mesh is not shared by all inputs and outputs
216 217
            if self._op_type == "while":
                return None
218 219 220 221 222
            for dist_attr in self._inputs_dist_attrs.values():
                dist_attr.process_mesh = process_mesh
            for dist_attr in self._outputs_dist_attrs.values():
                dist_attr.process_mesh = process_mesh

223 224 225 226 227 228 229 230 231
    @property
    def op_type(self):
        return self._op_type

    @op_type.setter
    def op_type(self, op_type):
        if op_type is not None:
            self._op_type = op_type

232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
    @property
    def impl_type(self):
        return self._impl_type

    @impl_type.setter
    def impl_type(self, impl_type):
        if impl_type is not None:
            self._impl_type = impl_type

    @property
    def impl_idx(self):
        return self._impl_idx

    @impl_idx.setter
    def impl_idx(self, impl_idx):
        if impl_idx is not None:
            self._impl_idx = impl_idx

250 251 252 253 254 255 256 257 258
    @property
    def is_recompute(self):
        return self._is_recompute

    @is_recompute.setter
    def is_recompute(self, is_recompute):
        assert isinstance(is_recompute, bool)
        self._is_recompute = is_recompute

259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
    @property
    def inputs_dist_attrs(self):
        return self._inputs_dist_attrs

    @property
    def outputs_dist_attrs(self):
        return self._outputs_dist_attrs

    def get_input_dist_attr(self, name):
        return self._inputs_dist_attrs.get(name, None)

    def set_input_dist_attr(self, name, dist_attr):
        dist_attr_object = TensorDistributedAttribute()
        dist_attr_object.init(dist_attr)
        self._inputs_dist_attrs[name] = dist_attr_object

    def get_output_dist_attr(self, name):
        return self._outputs_dist_attrs.get(name, None)

    def set_output_dist_attr(self, name, dist_attr):
        dist_attr_object = TensorDistributedAttribute()
        dist_attr_object.init(dist_attr)
        self._outputs_dist_attrs[name] = dist_attr_object

    def get_input_dims_mapping(self, name):
        input_dist_attr = self.get_input_dist_attr(name)
        if input_dist_attr:
            dims_mapping = input_dist_attr.dims_mapping
        else:
            dims_mapping = None
        return dims_mapping

    def set_input_dims_mapping(self, name, dims_mapping):
        input_dist_attr = self.get_input_dist_attr(name)
        if input_dist_attr:
            input_dist_attr.dims_mapping = dims_mapping
        else:
            dist_attr = TensorDistributedAttribute()
            dist_attr.dims_mapping = dims_mapping
            self._inputs_dist_attrs[name] = dist_attr

    def get_output_dims_mapping(self, name):
        output_dist_attr = self.get_output_dist_attr(name)
        if output_dist_attr:
            dims_mapping = output_dist_attr.dims_mapping
        else:
            dims_mapping = None
        return dims_mapping

    def set_output_dims_mapping(self, name, dims_mapping):
        output_dist_attr = self.get_output_dist_attr(name)
        if output_dist_attr:
            output_dist_attr.dims_mapping = dims_mapping
        else:
            dist_attr = TensorDistributedAttribute()
            dist_attr.dims_mapping = dims_mapping
            self._outputs_dist_attrs[name] = dist_attr

    def init(self, dist_attr):
        if dist_attr is None:
            return
        assert isinstance(dist_attr, (dict, OperatorDistributedAttribute)), \
            "The type of dist_attr must be dict or OperatorDistributedAttribute."
        if isinstance(dist_attr, dict):
            for key, value in dist_attr.items():
                if isinstance(key, Variable):
                    tensor_dist_attr = TensorDistributedAttribute()
                    tensor_dist_attr.init(value)
                    if dist_attr.get(append_op_input_suffix(key.name), False):
                        self.set_input_dist_attr(key.name, tensor_dist_attr)
                    if dist_attr.get(append_op_output_suffix(key.name), False):
                        self.set_output_dist_attr(key.name, tensor_dist_attr)
                else:
                    if key in get_op_dist_attr_field_keys():
                        field_property = OperatorDistributedAttribute.__dict__.get(
                            key, None)
                        if field_property:
                            field_property.fset(self, value)
                        else:
                            assert False, "No setter for {} in args {}.".format(
                                key, dist_attr)
        elif isinstance(dist_attr, OperatorDistributedAttribute):
            for tensor_name, tensor_dist_attr in dist_attr.inputs_dist_attrs.items(
            ):
                self.set_input_dist_attr(
                    tensor_name, dist_attr.get_input_dist_attr(tensor_name))
            for tensor_name, tensor_dist_attr in dist_attr.outputs_dist_attrs.items(
            ):
                self.set_output_dist_attr(
                    tensor_name, dist_attr.get_output_dist_attr(tensor_name))
            self._is_annotated = copy.deepcopy(dist_attr._is_annotated)
            for key in get_op_dist_attr_field_keys():
                field_property = OperatorDistributedAttribute.__dict__.get(key,
                                                                           None)
                if field_property:
                    field_property.fset(self, field_property.fget(dist_attr))
                else:
                    assert False, "No setter for {} in args {}.".format(
                        key, dist_attr)
        # Make sure proscess_meshes in dist op be same
359 360
        if self.op_type == "while":
            return None
361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
        process_meshes = []
        process_meshes.append(self.process_mesh)
        for tensor_dist_attr in self.inputs_dist_attrs.values():
            process_meshes.append(tensor_dist_attr.process_mesh)
        for tensor_dist_attr in self.outputs_dist_attrs.values():
            process_meshes.append(tensor_dist_attr.process_mesh)
        shared_process_mesh = None
        for process_mesh in process_meshes:
            if process_mesh is not None:
                if shared_process_mesh is None:
                    shared_process_mesh = process_mesh
                else:
                    assert process_mesh == shared_process_mesh, \
                        "ProcessMeshes in DistributedOperator must be the same."
        self.process_mesh = shared_process_mesh

377 378 379 380 381 382 383 384 385 386 387 388
    # def reset(self, skip_dist_attr_field_names):
    #     for tensor_dist_attr in self.inputs_dist_attrs.values():
    #         tensor_dist_attr.reset(skip_dist_attr_field_names)
    #     for tensor_dist_attr in self.outputs_dist_attrs.values():
    #         tensor_dist_attr.reset(skip_dist_attr_field_names)
    #     if skip_dist_attr_field_names is not None \
    #         and "process_mesh" not in skip_dist_attr_field_names:
    #         self.process_mesh = None
    #     self.impl_type = "default"
    #     self.impl_idx = 0
    #     self._is_annotated = {}

389 390 391
    def is_annotated(self, attr_name):
        return self._is_annotated.get(attr_name, False)

392 393 394 395
    # def mark_annotated_all(self):
    #     for key in get_op_dist_attr_field_keys():
    #         self.mark_annotated(key)

396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
    def mark_annotated(self, attr_name):
        if attr_name == "process_mesh":
            # Make sure proscess_mesh be annotated consistently
            self._is_annotated[attr_name] = True
            for tensor_dist_attr in self.inputs_dist_attrs.values():
                tensor_dist_attr.mark_annotated(attr_name)
            for tensor_dist_attr in self.outputs_dist_attrs.values():
                tensor_dist_attr.mark_annotated(attr_name)
        else:
            self._is_annotated[attr_name] = True

    def mark_annotated_as(self, dist_attr):
        if dist_attr is None:
            return
        assert isinstance(dist_attr, (dict, OperatorDistributedAttribute)), \
            "The type of dist_attr must be dict or OperatorDistributedAttribute."
        if isinstance(dist_attr, dict):
            for key, value in dist_attr.items():
                if isinstance(key, Variable):
                    input_dist_attr = self.get_input_dist_attr(key.name)
                    if input_dist_attr is not None:
                        input_dist_attr.mark_annotated_as(value)
                    output_dist_attr = self.get_output_dist_attr(key.name)
                    if output_dist_attr is not None:
                        output_dist_attr.mark_annotated_as(value)
                else:
                    if key in get_op_dist_attr_field_keys():
                        self.mark_annotated(key)
            process_mesh_annotated = False
            if self.is_annotated("process_mesh"):
                process_mesh_annotated = True
            for tensor_dist_attr in self.inputs_dist_attrs.values():
                if tensor_dist_attr.is_annotated("process_mesh"):
                    process_mesh_annotated = True
            for tensor_dist_attr in self.outputs_dist_attrs.values():
                if tensor_dist_attr.is_annotated("process_mesh"):
                    process_mesh_annotated = True
            if process_mesh_annotated:
                self.mark_annotated("process_mesh")
        elif isinstance(dist_attr, OperatorDistributedAttribute):
            process_mesh_annotated = False
            self._is_annotated = copy.deepcopy(dist_attr._is_annotated)
            if self.is_annotated("process_mesh"):
                process_mesh_annotated = True
            for tensor_name, tensor_dist_attr in dist_attr.inputs_dist_attrs.items(
            ):
                input_dist_attr = self.get_input_dist_attr(tensor_name)
                if input_dist_attr is not None:
                    input_dist_attr.mark_annotated_as(tensor_dist_attr)
                    if input_dist_attr.is_annotated("process_mesh"):
                        process_mesh_annotated = True
            for tensor_name, tensor_dist_attr in dist_attr.outputs_dist_attrs.items(
            ):
                output_dist_attr = self.get_output_dist_attr(tensor_name)
                if output_dist_attr is not None:
                    output_dist_attr.mark_annotated_as(tensor_dist_attr)
                    if output_dist_attr.is_annotated("process_mesh"):
                        process_mesh_annotated = True
            if process_mesh_annotated:
                self.mark_annotated("process_mesh")

    def clear_annotated(self):
        self._is_annotated.clear()
        for tensor_dist_attr in self.inputs_dist_attrs.values():
            tensor_dist_attr.clear_annotated()
        for tensor_dist_attr in self.outputs_dist_attrs.values():
            tensor_dist_attr.clear_annotated()

    def is_annotated_input_dims_mapping(self, name):
        input_dist_attr = self.get_input_dist_attr(name)
        if input_dist_attr:
            return input_dist_attr.is_annotated("dims_mapping")
        else:
            return False

    def is_annotated_output_dims_mapping(self, name):
        output_dist_attr = self.get_output_dist_attr(name)
        if output_dist_attr:
            return output_dist_attr.is_annotated("dims_mapping")
        else:
            return False

    def __str__(self):
        str = "\n\top_dist_attr = {"
        if self.is_annotated("process_mesh"):
            annotated_str = "annotated"
        else:
            annotated_str = "non-annotated"
        str += "\n\t\tprocess_mesh ({}): {},".format(annotated_str,
                                                     self.process_mesh)

        for arg_name, tensor_dist_attr in self.inputs_dist_attrs.items():
            str += "\n\t\t{}'s: {},".format(arg_name, tensor_dist_attr)

        for arg_name, tensor_dist_attr in self.outputs_dist_attrs.items():
            str += "\n\t\t{}'s: {},".format(arg_name, tensor_dist_attr)

        str += "\n\t\timpl type: {}, ".format(self._impl_type)
        str += "impl idx: {}".format(self._impl_idx)
        str += "\n\t}"
        return str