graph_test.cc 6.8 KB
Newer Older
X
Xin Pan 已提交
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
X
Xin Pan 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/ir/graph.h"
#include "gtest/gtest.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/program_desc.h"

namespace paddle {
namespace framework {

class NOP : public OperatorBase {
 public:
  NOP(const std::string &type, const VariableNameMap &inputs,
      const VariableNameMap &outputs, const AttributeMap &attrs)
      : OperatorBase(type, inputs, outputs, attrs) {}

 private:
  void RunImpl(const Scope &scope,
               const platform::Place &place) const override {}
};

class SumOpMaker : public OpProtoAndCheckerMaker {
 public:
  void Make() {
    AddInput("X", "").AsDuplicable();
X
Xin Pan 已提交
39
    AddOutput("Out", "").AsDuplicable();
X
Xin Pan 已提交
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
    AddComment("");
  }
};

class SumOpVarTypeInference : public VarTypeInference {
 public:
  void operator()(const OpDesc &op_desc, BlockDesc *block) const override {
    auto &inputs = op_desc.Input("X");
    auto default_var_type = proto::VarType::SELECTED_ROWS;

    bool any_input_is_lod_tensor = std::any_of(
        inputs.begin(), inputs.end(), [block](const std::string &name) {
          return block->Var(name)->GetType() == proto::VarType::LOD_TENSOR;
        });
    if (any_input_is_lod_tensor) {
      default_var_type = proto::VarType::LOD_TENSOR;
    }

    auto out_var_name = op_desc.Output("Out").front();
    block->Var(out_var_name)->SetType(default_var_type);
  }
};
X
Xin Pan 已提交
62 63 64 65 66 67 68 69 70 71 72 73 74 75

class DummyOpMaker : public OpProtoAndCheckerMaker {
 public:
  void Make() {
    AddInput("X", "").AsDuplicable();
    AddOutput("Out", "").AsDuplicable();
    AddComment("");
  }
};

class DummyOpVarTypeInference : public VarTypeInference {
 public:
  void operator()(const OpDesc &op_desc, BlockDesc *block) const override {}
};
X
Xin Pan 已提交
76 77 78 79 80
}  // namespace framework
}  // namespace paddle

REGISTER_OPERATOR(sum, paddle::framework::NOP, paddle::framework::SumOpMaker,
                  paddle::framework::SumOpVarTypeInference);
X
Xin Pan 已提交
81 82
REGISTER_OPERATOR(dummy, paddle::framework::NOP, paddle::framework::SumOpMaker,
                  paddle::framework::SumOpVarTypeInference);
X
Xin Pan 已提交
83 84 85 86 87 88 89 90 91 92 93 94
REGISTER_OPERATOR(sum_without_infer_var_type, paddle::framework::NOP,
                  paddle::framework::SumOpMaker);

namespace paddle {
namespace framework {

TEST(GraphTest, Basic) {
  ProgramDesc prog;
  auto *op = prog.MutableBlock(0)->AppendOp();
  op->SetType("sum");
  op->SetInput("X", {"test_a", "test_b", "test_c"});
  op->SetOutput("Out", {"test_out"});
X
Xin Pan 已提交
95
  op->SetAttr("op_role", 1);
X
Xin Pan 已提交
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111

  prog.MutableBlock(0)->Var("test_a")->SetType(proto::VarType::SELECTED_ROWS);
  prog.MutableBlock(0)->Var("test_b")->SetType(proto::VarType::SELECTED_ROWS);
  prog.MutableBlock(0)->Var("test_c")->SetType(proto::VarType::SELECTED_ROWS);
  prog.MutableBlock(0)->Var("test_out");

  op->InferVarType(prog.MutableBlock(0));

  ASSERT_EQ(proto::VarType::SELECTED_ROWS,
            prog.MutableBlock(0)->Var("test_out")->GetType());

  prog.MutableBlock(0)->Var("test_b")->SetType(proto::VarType::LOD_TENSOR);
  op->InferVarType(prog.MutableBlock(0));
  ASSERT_EQ(proto::VarType::LOD_TENSOR,
            prog.MutableBlock(0)->Var("test_out")->GetType());

X
Xin Pan 已提交
112
  std::unique_ptr<ir::Graph> g(new ir::Graph(prog));
X
Xin Pan 已提交
113
  std::vector<ir::Node *> nodes(g->Nodes().begin(), g->Nodes().end());
X
Xin Pan 已提交
114 115
  for (ir::Node *n : nodes) {
    if (n->Name() == "sum") {
N
nhzlx 已提交
116 117
      ASSERT_EQ(n->inputs.size(), 3UL);
      ASSERT_EQ(n->outputs.size(), 1UL);
X
Xin Pan 已提交
118 119
    } else if (n->Name() == "test_a" || n->Name() == "test_b" ||
               n->Name() == "test_c") {
N
nhzlx 已提交
120 121
      ASSERT_EQ(n->inputs.size(), 0UL);
      ASSERT_EQ(n->outputs.size(), 1UL);
X
Xin Pan 已提交
122
    } else if (n->Name() == "test_out") {
N
nhzlx 已提交
123 124
      ASSERT_EQ(n->inputs.size(), 1UL);
      ASSERT_EQ(n->outputs.size(), 0UL);
X
Xin Pan 已提交
125 126
    }
  }
X
Xin Pan 已提交
127
  ASSERT_EQ(nodes.size(), 5);
X
Xin Pan 已提交
128
}
X
Xin Pan 已提交
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204

TEST(GraphTest, WriteAfterRead) {
  // void Test() {
  ProgramDesc prog;
  auto *op = prog.MutableBlock(0)->AppendOp();
  op->SetType("sum");
  op->SetInput("X", {"a"});
  op->SetOutput("Out", {"b"});
  op->SetAttr("op_role", 1);

  op = prog.MutableBlock(0)->AppendOp();
  op->SetType("dummy");
  op->SetInput("X", {"c"});
  op->SetOutput("Out", {"a"});
  op->SetAttr("op_role", 1);

  prog.MutableBlock(0)->Var("a")->SetType(proto::VarType::LOD_TENSOR);
  prog.MutableBlock(0)->Var("b")->SetType(proto::VarType::LOD_TENSOR);
  prog.MutableBlock(0)->Var("c")->SetType(proto::VarType::LOD_TENSOR);

  std::unique_ptr<ir::Graph> g(new ir::Graph(prog));
  ir::Node *control_dep1 = nullptr;
  ir::Node *control_dep2 = nullptr;
  for (ir::Node *n : g->Nodes()) {
    if (n->Name() == "sum") {
      ASSERT_EQ(n->outputs[0]->Name(), "b");
      ASSERT_TRUE(ir::IsControlDepVar(*n->outputs[1]));
      control_dep1 = n->outputs[1];
      ASSERT_EQ(n->outputs.size(), 2);
    }
    if (n->Name() == "dummy") {
      ASSERT_EQ(n->inputs[0]->Name(), "c");
      ASSERT_TRUE(ir::IsControlDepVar(*n->inputs[1]));
      control_dep2 = n->inputs[1];
      ASSERT_EQ(n->inputs.size(), 2);
    }
  }
  ASSERT_EQ(control_dep1, control_dep2);
}

TEST(GraphTest, WriteAfterWrite) {
  // void Test() {
  ProgramDesc prog;
  auto *op = prog.MutableBlock(0)->AppendOp();
  op->SetType("sum");
  op->SetInput("X", {"a"});
  op->SetOutput("Out", {"b"});
  op->SetAttr("op_role", 1);

  op = prog.MutableBlock(0)->AppendOp();
  op->SetType("dummy");
  op->SetInput("X", {"c"});
  op->SetOutput("Out", {"b"});
  op->SetAttr("op_role", 1);

  prog.MutableBlock(0)->Var("a")->SetType(proto::VarType::LOD_TENSOR);
  prog.MutableBlock(0)->Var("b")->SetType(proto::VarType::LOD_TENSOR);
  prog.MutableBlock(0)->Var("c")->SetType(proto::VarType::LOD_TENSOR);

  std::unique_ptr<ir::Graph> g(new ir::Graph(prog));
  ir::Node *control_dep1 = nullptr;
  ir::Node *control_dep2 = nullptr;
  for (ir::Node *n : g->Nodes()) {
    if (n->Name() == "sum") {
      ASSERT_EQ(n->outputs[0]->Name(), "b");
      ASSERT_TRUE(ir::IsControlDepVar(*n->outputs[1]));
      ASSERT_EQ(n->outputs.size(), 2);
      control_dep1 = n->outputs[1];
    }
    if (n->Name() == "dummy") {
      ASSERT_EQ(n->inputs[0]->Name(), "c");
      ASSERT_TRUE(ir::IsControlDepVar(*n->inputs[1]));
      control_dep2 = n->inputs[1];
      ASSERT_EQ(n->inputs.size(), 2);
    }
  }
M
minqiyang 已提交
205 206 207
  ASSERT_NE(control_dep1, nullptr);
  ASSERT_NE(control_dep2, nullptr);
  ASSERT_EQ(control_dep1, control_dep2);
X
Xin Pan 已提交
208
}
X
Xin Pan 已提交
209 210
}  // namespace framework
}  // namespace paddle